
1 Fall 1998, Lecture 21

Subroutines

n A subroutine is a generic subprogram,
including both functions and procedures

● Function = returns a value

● Procedure = does not return a value

n We can illustrate a subroutine call as
follows:

… subroutine:
startup sequence prologue
call subroutine body of subroutine
cleanup sequence epilogue
…

● Note that, in a high-level language such as
C, the startup sequence, prologue,
epilogue, and cleanup sequence are
essentially non-existent

2 Fall 1998, Lecture 21

Simple Subroutine Calling

n So that a subroutine knows where to
return, the return address is stored in a
register, and used by the subroutine

…
MOVE R31,#ret ; store return addr
JUMP sub1

ret: ; continue prog.
…

sub1: … ; contents of sub1
JUMP @R31 ; return to caller

● This subroutine calling convention uses
R31 to hold the return address

● The JUMP instructions above use either:
n Direct addressing

n Register indirect addressing

● Some machines support a jump-to-
subroutine instruction that combines the
MOVE and JUMP above

JSR R31,sub1

3 Fall 1998, Lecture 21

Saving Return Address in Memory

n To allow hierarchical subroutines, the
return address must be stored in memory

…
JSR R31,sub1
… ; continue prog.

sub1: STORE s1ret,R31; save return addr
… ; contents of sub1
JSR R31,sub2
…
LOAD R31,s1ret ; restore ret addr
JUMP @R31 ; return to caller

sub2: STORE s2ret,R31; save return addr
… ; contents of sub2
LOAD R31,s2ret ; restore ret addr
JUMP @R31 ; return to caller
.bss

s1ret: .reserve 4
s2ret: .reserve 4

● Subroutine sub2 is a leaf subroutine — it
does not call any other subroutine
n Can it be improved on?

4 Fall 1998, Lecture 21

Saving Registers in Memory

n Since the subroutine doesn’t know which
registers the routine calling it is using, it
must save (in memory) the contents of
any registers it will use, and restore
those values before returning

sub1: STORE s1ret,R31; save return addr
STORE s1r0,R0 ; save registers
STORE s1r1,R1
…
LOAD R0,s1r0 ; restore registers
LOAD R1,s1r1
…
JUMP @R31 ; return to caller
.bss

s1ret: .reserve 4
s1r0: .reserve 4
s1r1: .reserve 4

…

● It might be useful to have subroutines
available to save/restore all registers



5 Fall 1998, Lecture 21

Passing Parameters

n To pass parameters to a subroutine, or
return a result, we must establish a
parameter passing convention

n Example convention:

● R2 = returned result

● R3–R30 = parameters

● R31 = return address

n Parameter passing by value / result

● Caller passes values to subroutine in
registers R3–R30

● Subroutine can modify those values to
pass results back to caller

● Caller might then need to store returned
values in memory

● Good for passing simple variables only

6 Fall 1998, Lecture 21

Passing Parameters (cont.)

n Parameter passing by value

● Same as passing by value / result, but
subroutine shouldn’t modify the values

● Good for passing constants

n Parameter passing by reference

● Caller passes address of (pointers to)
values stored in memory to subroutine in
registers R3–R30

● Subroutine can use indirect addressing to
access those values, and modify them as
necessary to pass result back to caller

● Caller no longer needs to store returned
values in memory (they’re already there)

● Good for passing complex data structures
(strings, arrays, structures)

7 Fall 1998, Lecture 21

Static Allocation of a Parameter Block

n One deficiency of the parameter-passing
methods introduced so far:

● You can’t pass more parameters than you
have registers available

n Solution:

● Allocate a parameter block in memory (a
collection of contiguous memory
locations) to store all parameters
n Either values, or pointers to values

● Keep track of offset of each parameter
from the beginning of the block

● Save the return address and any return
values in the parameter block as well

8 Fall 1998, Lecture 21

Dynamic Allocation of a
Parameter Stack

n More deficiencies of the parameter-
passing methods introduced so far

● At any point in time, memory is allocated
for storing registers for every subroutine,
whether that space is currently needed or
not

● There is no provision for recursion

n Solution (skim details in Section 6.5):

● Use a stack (in memory) to dynamically
allocate space to store parameters
passed to subroutines

● At any point in time, only active
subroutines are using space on the stack

● Stack frame (part of stack corresponding
to a particular subroutine call) contains:
n Parameters being passed

n Return value & return address

n Space for local variables


