
1 Fall 1998, Lecture 22

Representing / Encoding Integers

n Encoding = symbolic representation of a
value, in some specified number of digits,
in some specified alphabet (here, 0 & 1)

n Unsigned binary representation

● Represent only positive numbers
n Direct binary representation

● Examples (8-bit unsigned binary)
+1310 = +11012 = 000011012ub

● Can represent 0 to 255 in 8 bits

n Signed magnitude representation

● Precede number with sign bit
0 = positive, 1 = negative

● Examples (8-bit signed magnitude)
+1310 = +11012 = 000011012sm

–1310 = –11012 = 100011012sm

● Can represent –127 to +127 in 8 bits

2 Fall 1998, Lecture 22

Encoding Integers (cont.)

n Excess n representation

● Add bias value (n) to number, then
represent directly in binary

● Examples (8-bit excess 128)
+1310 = 13 + 128 = 141 = 100011012ex128

–1310 = –13 + 128 = 115 = 011100112ex128

● Can represent –128 to 127 in 8 bits

n Two’s complement representation

● Represent positive numbers in n-bit
signed magnitude form

● Represent negative numbers as 2n–N

● Examples (8-bit two’s complement)
+1310 = +00011012 = 000011012’scomp

–1310 = 256 – 13 = 243 = 111100112’scomp

● Can represent –128 to 127 in 8 bits

3 Fall 1998, Lecture 22

8-Bit Numerical Representations

Numeric Unsigned Signed Excess Excess Two's
Value Binary Magnitude 128 127 Complement

255 11111111

254 11111110 N/A N/A N/A N/A

…

128 10000000 11111111

127 01111111 01111111 11111111 11111110 01111111

126 01111110 01111110 11111110 11111101 01111110

… … … … … …

2 00000010 00000010 10000010 10000001 00000010

1 00000001 00000001 10000001 10000000 00000001

0 00000000 00000000 10000000 01111111 00000000

-1 10000001 01111111 01111110 11111111

-2 10000010 01111110 01111101 11111110

… N/A … … … …

-127 11111111 00000001 00000000 10000001

-128 N/A 00000000 N/A 10000000

4 Fall 1998, Lecture 22

Worksheet — Two’s Complement
Addition and Subtraction

n Perform the following arithmetic
operations in 4-bit two’s complement
arithmetic, showing your work:

2 + 3 =
2 – 4 =

(–7) – (–5) =

(–5) + (–2) =

n To add two numbers, add as usual

n To subtract two numbers, negate the
second, and then add

n Two ways to negate a two’s complement
number:

– Invert all the bits, and add 1 to the result
– Scan right to left, keep all bit the same, but

invert all bits after passing the first “1”
– In 8 bits: –13 = –00001101 = 11110011

n Why subtract this way??

5 Fall 1998, Lecture 22

Fixed-Point Representation

n Suppose we have a number of values to
represent. One way to do so would be
use a specific number of digits, assuming
a decimal point to the right of the lsd:

000500. 006000. 010000.

n Or we could assume that the decimal
point is further to the right of the lsd:

000005 _ _. 000060 _ _. 000100 _ _.

n We could also assume that the decimal
point is between the msd and lsd:

00500.0 06000.0 10000.0

n All of these are called fixed-point
representations — ones where the
decimal point is fixed at one specific
place for encoding all numbers

6 Fall 1998, Lecture 22

Floating-Point Representation

n Consider the following ways of
representing the decimal values:

5 60 100 (x100)

500 6,000 10,000 (x1)

5000 60,000 100,000 (x0.1)

n Internally, we can represent a value as:

number, n multiplied by scale factor, s

000005 000060 000100 s = 100

000500 006000 010000 s = 1

005000 060000 100000 s = 0.1

n Encoding a value using a number
(mantissa) and an scale factor
(characteristic, or exponent, to an implicit
base) is called a floating-point
representation

7 Fall 1998, Lecture 22

Floating-Point Representation

n In general, this is all very similar to
scientific notation — writing a number as
as the product of a decimal number and
a power of 10

● 5 x 102 60 x 102 100 x 102

● 500 x 100 6000 x 100 100000 x 100

n A number can be represented uniquely in
normal form — where we insist that there
be exactly one non-zero digit to the left of
the decimal point

● 5 x 102 6 x 103 1 x 104

n All significant digits must be included.
Thus the following three values are
different:

● 5 x 102 5.0 x 102 5.000 x 102

8 Fall 1998, Lecture 22

Homework #5 — Due 11/9/98 (Part 1)

1. Perform the following arithmetic
operations in 5-bit two’s complement
arithmetic, showing your work:

6 + 7 =
6 – 7 =

6 + (–4) =

(–2) – (–5) =

