- Encoding = symbolic representation of a value, in some specified number of digits, in some specified alphabet (here, $0 \& 1$)

Unsigned binary representation

- Represent only positive numbers
- Direct binary representation
- Examples (8-bit unsigned binary)
$+13_{10}=+1101_{2}=00001101_{\text {2ub }}$
- Can represent 0 to 255 in 8 bits

Signed magnitude representation

- Precede number with sign bit
$0=$ positive, $1=$ negative
- Examples (8-bit signed magnitude)

$$
\begin{aligned}
& +13_{10}=+1101_{2}=00001101_{2 \mathrm{sm}} \\
& -13_{10}=-1101_{2}=10001101_{2 \mathrm{sm}}
\end{aligned}
$$

- Can represent -127 to +127 in 8 bits
- Excess n representation
- Add bias value (n) to number, then represent directly in binary
- Examples (8-bit excess 128) $+13_{10}=13+128=141=10001101_{2 \times 128}$ $-13_{10}=-13+128=115=01110011_{\text {2ex } 128}$
- Can represent -128 to 127 in 8 bits
- Two's complement representation
- Represent positive numbers in n-bit signed magnitude form
- Represent negative numbers as 2^{n-N}
- Examples (8-bit two's complement) $+13_{10}=+0001101_{2}=00001101_{2}$ 'scomp $-13_{10}=256-13=243=11110011_{2 \text { 'scomp }}$
- Can represent -128 to 127 in 8 bits

8-Bit Numerical Representations

Numeric Value	Unsigned Binary	Signed Magnitude	$\begin{gathered} \text { Excess } \\ 128 \end{gathered}$	$\begin{gathered} \text { Excess } \\ 127 \end{gathered}$	Two's Complemen
255	11111111	N/A	N/A	N/A	N/A
254	11111110				
\ldots					
128	10000000			11111111	
127	01111111	01111111	11111111	11111110	01111111
126	01111110	01111110	11111110	11111101	01111110
\ldots	\ldots
2	00000010	00000010	10000010	10000001	00000010
1	00000001	00000001	10000001	10000000	00000001
0	00000000	00000000	10000000	01111111	00000000
-1	N/A	10000001	01111111	01111110	11111111
-2		10000010	01111110	01111101	11111110
\ldots		\ldots	\ldots	\ldots	\ldots
-127		11111111	00000001	00000000	10000001
-128		N/A	00000000	N/A	10000000

Worksheet - Two's Complement Addition and Subtraction

- Perform the following arithmetic operations in 4-bit two's complement arithmetic, showing your work:

$$
\begin{aligned}
& 2+3= \\
& 2-4= \\
& (-7)-(-5)= \\
& (-5)+(-2)=
\end{aligned}
$$

- To add two numbers, add as usual
- To subtract two numbers, negate the second, and then add
- Two ways to negate a two's complement number:
- Invert all the bits, and add 1 to the result
- Scan right to left, keep all bit the same, but invert all bits after passing the first " 1 "
- In 8 bits: $-13=-00001101=11110011$
- Why subtract this way??
- Suppose we have a number of values to represent. One way to do so would be use a specific number of digits, assuming a decimal point to the right of the Isd:

$$
000500.006000 .010000 .
$$

Or we could assume that the decimal point is further to the right of the Isd: 000005 \qquad . 000060 \qquad . 000100 \qquad .

We could also assume that the decimal point is between the msd and Isd:

$$
\begin{array}{lll}
00500.0 & 06000.0 & 10000.0
\end{array}
$$

All of these are called fixed-point representations - ones where the decimal point is fixed at one specific place for encoding all numbers

- Consider the following ways of representing the decimal values:

5	60	100
500	6,000	10,000
5000	60,000	100,000

■ Internally, we can represent a value as: number, $n \quad$ multiplied by scale factor, s

000005	000060	000100	$s=100$
000500	006000	010000	$s=1$
005000	060000	100000	$s=0.1$

- Encoding a value using a number (mantissa) and an scale factor (characteristic, or exponent, to an implicit base) is called a floating-point representation

Floating-Point Representation

In general, this is all very similar to scientific notation - writing a number as as the product of a decimal number and a power of 10

$$
\begin{array}{lll}
-5 \times 10^{2} & 60 \times 10^{2} & 100 \times 10^{2} \\
-500 \times 10^{0} & 6000 \times 10^{0} & 100000 \times 10^{0}
\end{array}
$$

- A number can be represented uniquely in normal form - where we insist that there be exactly one non-zero digit to the left of the decimal point

$$
\text { - } 5 \times 10^{2} \quad 6 \times 10^{3} \quad 1 \times 10^{4}
$$

All significant digits must be included. Thus the following three values are different:

- 5×10^{2}
5.0×10^{2}
5.000×10^{2}

Homework \#5 — Due 11/9/98 (Part 1)

1. Perform the following arithmetic operations in 5-bit two's complement arithmetic, showing your work:

$$
\begin{aligned}
& 6+7= \\
& 6-7= \\
& 6+(-4)= \\
& (-2)-(-5)=
\end{aligned}
$$

