Encoding Integers (cont.) Representing / Encoding Integers Encoding = symbolic representation of a Excess n representation value, in some specified number of digits, Add bias value (n) to number, then in some specified alphabet (here, 0 & 1) represent directly in binary Examples (8-bit excess 128) Unsigned binary representation $+13_{10} = 13 + 128 = 141 = 10001101_{2ex128}$ Represent only positive numbers $-13_{10} = -13 + 128 = 115 = 01110011_{2ex128}$ Direct binary representation Can represent –128 to 127 in 8 bits Examples (8-bit unsigned binary) $+13_{10} = +1101_2 = 00001101_{2ub}$ Two's complement representation Can represent 0 to 255 in 8 bits Represent positive numbers in n-bit signed magnitude form Signed magnitude representation Represent negative numbers as 2ⁿ–N Precede number with sign bit Examples (8-bit two's complement) 0 = positive, 1 = negative $+13_{10} = +0001101_2 = 00001101_{2'scomp}$ Examples (8-bit signed magnitude) $-13_{10} = 256 - 13 = 243 = 11110011_{2'scomp}$ $+13_{10} = +1101_2 = 00001101_{2sm}$ Can represent –128 to 127 in 8 bits $-13_{10} = -1101_2 = 10001101_{2sm}$ Can represent –127 to +127 in 8 bits Fall 1998, Lecture 22 Fall 1998, Lecture 22 2 Worksheet — Two's Complement 8-Bit Numerical Representations Addition and Subtraction

Numeric Value	Unsigned Binary	Signed Magnitude	Excess 128	Excess 127	Two's Complemen
255	11111111				
254	11111110	N/A	N/A	N/A	N/A
128	1000000			11111111	
127	01111111	01111111	11111111	11111110	01111111
126	01111110	01111110	11111110	11111101	01111110
2	00000010	00000010	10000010	10000001	00000010
1	00000001	0000001	10000001	1000000	00000001
0	00000000	00000000	1000000	01111111	00000000
-1		10000001	01111111	01111110	11111111
-2		10000010	01111110	01111101	11111110
	N/A				
-127		11111111	00000001	00000000	10000001
-128		N/A	00000000	N/A	10000000

Perform the following arithmetic

arithmetic, showing your work:

2 + 3 = 2 - 4 =

(-7) - (-5) =(-5) + (-2) =

operations in 4-bit two's complement

- To add two numbers, add as usual
- To subtract two numbers, negate the second, and then add
 - Two ways to negate a two's complement number:
 - Invert all the bits, and add 1 to the result
 - Scan right to left, keep all bit the same, but invert all bits <u>after passing</u> the first "1"
 - − In 8 bits: −13 = −00001101 = 11110011
 - Why subtract this way??

3

Fixed-Point Representation	Floating-Point Representation		
Suppose we have a number of values to represent. One way to do so would be	Consider the following ways of representing the decimal values:		
use a specific number of digits, assuming a decimal point to the right of the lsd:	5 60 100 (x100)		
	500 6,000 10,000 (x1)		
	5000 60,000 100,000 (x0.1)		
Or we could assume that the decimal point is further to the right of the lsd:	Internally, we can represent a value as:		
000005 000060 000100	number, n multiplied by scale factor, s		
We could also assume that the decimal	000005 000060 000100 <i>s</i> = 100		
point is between the msd and lsd:	000500 006000 010000 <i>s</i> = 1		
00500.0 06000.0 10000.0	005000 060000 100000 <i>s</i> = 0.1		
All of these are called <i>fixed-point</i> representations — ones where the decimal point is <u>fixed</u> at one specific place for encoding all numbers	Encoding a value using a number (mantissa) and an scale factor (characteristic, or exponent, to an implicit base) is called a floating-point representation		
5 Fall 1998, Lecture 22	6 Fall 1998, Lecture 22		
Floating-Point Representation	Homework #5 — Due 11/9/98 (Part 1)		
In general, this is all very similar to scientific notation — writing a number as as the product of a decimal number and a power of 10	 Perform the following arithmetic operations in 5-bit two's complement arithmetic, showing your work: 6 + 7 = 		
• 5×10^2 60 x 10^2 100 x 10^2	6 - 7 =		
• 500 x 10° 6000 x 10° 100000 x 10°	6 + (-4) = (-2) - (-5) =		
A number can be represented uniquely in normal form — where we insist that there be exactly one non-zero digit to the left of the decimal point			
• 5×10^2 6 x 10^3 1 x 10^4			
 All significant digits must be included. Thus the following three values are different: 			
• 5×10^2 5.0 x 10^2 5.000 x 10^2			

8

7