IBM System 360/370 Floating Point

sign exponent mantissa

s	e	f
	$\leftarrow 7$ bits $\longrightarrow \longleftarrow$	24 bits \longrightarrow

value $=(-1)^{\mathrm{s}} 0 . \mathrm{f} \times 16^{\mathrm{e}-64}$

- Sign bit is 0 for positive number, 1 for negative number
- Mantissa represented as a fractional value, using signed magnitude
- Normalized to have leading zero
- Exponent represented using excess 64 (base assumed to be 16)

$$
\begin{aligned}
& 7.6875_{10}=111.1011_{2} \\
&=0.01111011_{2} \times 16^{1} \\
&=0.01111011_{2} \times 16^{65-64} \\
&=0 \quad 1000001 \quad 011101100000 \ldots 0_{\text {IBM } 360 \mathrm{fp}}
\end{aligned}
$$

DEC PDP 11 \& Vax Floating Point
sign exponent mantissa

■ value $=(-1)^{\mathrm{s}} 0.1 \mathrm{f} \times 2^{\mathrm{e}-128}$

- Sign bit is 0 for positive number, 1 for negative number
- Mantissa represented as a fractional value, using signed magnitude
- Normalized to begin with 0.1
- Leading " 1 " is assumed, and is not explicitly stored (called a hidden bit)
- Exponent represented using excess 128 (base assumed to be 2)

■ $7.6875_{10}=111.1011_{2}$
$=0.1111011_{2} \times 2^{3}$
$=0.1111011_{2} \times 2^{131-128}$
$=0 \quad 1000001111101100000 \ldots 0_{\text {DEC fp }}$

IEEE 754 Floating Point Standard

sign exponent		mantissa	
s e f			

value $=(-1)^{\mathrm{s}} 1 . \mathrm{f} \times 2^{\mathrm{e}-127}$

- Sign bit is 0 for positive number, 1 for negative number
- Mantissa represented as a fractional value, using signed magnitude
- Normalized to begin with 1.xxxxx
- Leading " 1 " is assumed, and is not explicitly stored (called a hidden bit)
- Base assumed to be 2
- Exponent represented using excess 127

$$
\begin{aligned}
7.6875_{10} & =111.1011_{2} \\
& =1.111011_{2} \times 2^{2} \\
& =1.111011_{2} \times 2^{129-127}
\end{aligned}
$$

$=0 \quad 1000000111101100000 \ldots 0_{\text {IEEE fp }}$

Table 8.2 The IEEE 754 and DEC floating point formats

s	e	f	IEEE	DEC
1 \vdots 1	$\begin{gathered} 1 \ldots \\ \vdots \\ 1 \ldots \\ 1 \ldots \end{gathered}$	$1 \ldots 11$ \vdots $0 \ldots 01$	NaN	numbers
1	$1 \ldots 11$	$0 \ldots 00$	$-\infty$	
1 \vdots 1	$\begin{gathered} 1 \ldots \\ \vdots \\ \vdots \\ 0 \end{gathered} \ldots$	$\begin{gathered} 1 \ldots 10 \\ \vdots \\ 1 \ldots .01 \\ \hline \end{gathered}$	numbers	
1 \vdots 1	$\begin{gathered} 0 \ldots 00 \\ \vdots \\ 0 \ldots 00 \\ \hline \end{gathered}$	$\begin{gathered} 1 \ldots .11 \\ \vdots \\ 0 \ldots .01 \end{gathered}$	denormals	reserved
1	$0 \ldots 00$	$0 \ldots 00$	-0	
0	$0 \ldots 00$	$0 \ldots 00$	+0	
0 \vdots 0	$\begin{gathered} 0 \ldots 00 \\ \vdots \\ 0 \ldots 00 \\ \hline \end{gathered}$	$\begin{gathered} 0 \ldots 01 \\ \vdots \\ 1 \ldots .11 \end{gathered}$	denormals	0
0 \vdots 0	$\begin{gathered} 0 \ldots \\ \hline 0 \\ \\ 1 \ldots \\ \hline \end{gathered}$	anything	numbers	numbers
0	$1 \ldots 11$	$0 \ldots 00$	$+\infty$	
0 \vdots 0	$\begin{gathered} 1 \ldots \\ \vdots \\ 1 \ldots \\ 1 \ldots \end{gathered}$	$\begin{gathered} 0 \ldots \\ \hline 0 \\ \vdots \\ 1 \ldots \end{gathered}$	NaN	

DEC vs. IEEE Floating Point

- In the DEC format, we can represent
- Zero - exponent of 0... 0
- Positive nums w/ exponents -127 to +127
- Negative nums w/ exponents -127 to +127

I In the IEEE format, we can represent

- Zero - expon. of $0 \ldots 0$, mantissa of $0 \ldots 0$
- Positive nums w/ exponents -126 to +127
- Positive infinity with exponent +128 , mantissa of $0 \ldots 0$
- NAN with exponent +128 , mantissa other than 0... 0
- Negative nums w/ exponents -126 to +127
- Negative infinity with exponent +128 , mantissa of $1 . . .1$
- NAN with exponent exponent +128 , mantissa other than 1... 1
- Denormals (numbers close to zero) with exponent of 0... 0

IEEE 754 Floating Point Standard (cont.)
sign exponent mantissa

s	e	f
$\longleftarrow 8$ bits $\longrightarrow \longleftarrow$		

- Additional support for representing numbers very close to zero (denormals)
- value $=(-1)^{\text {s }} 0 . f \times 2^{-126}$
- Sign bit as before
- Exponent assumed to be -126 , resented as $0 . .0$ (base assumed to be 2)
- Mantissa need not be normalized
- Value such as 1.0×2^{-130} can be represented as 0.0001×2^{-126}

IEEE 754 Floating Point Standard (cont.)

- A double precision format, shown above, is also available
- value $=(-1)^{\mathrm{s}} 1 . f \times 2^{-1023}$
- Sign bit as in single precision
- Mantissa in single precision
- Normalized to begin with 1.x
- Leading " 1 " is assumed, and is not explicitly stored (called a hidden bit)
- Exponent represented using excess 1023 (base assumed to be 2)

Homework \#5 - Due 11/9/98 (Part 2)

2. Convert to IEEE 754 floating point single precision format, showing your work as you convert between decimal and binary: -18.375
