IBM System 360/370 Floating Point

sign exponent mantissa

S e f

<— 7 bits —»= 24 bits ———>

m value = (-1)s 0.f x 16564

¢ Sign bit is O for positive number, 1 for
negative number

e Mantissa represented as a fractional
value, using signed magnitude

m Normalized to have leading zero

e Exponent represented using excess 64
(base assumed to be 16)

m /.6875,, =111.1011,
=0.01111011, x 16%
=0.01111011, x 165564
=0 1000001 011101100000...0igpy 360 p

1 Fall 1998, Lecture 23

DEC PDP 11 & Vax Floating Point

sign exponent mantissa

S e f

<— 8 hits —»>= 23 bits ——»

m value = (-1)s 0.1f x 2e-128

¢ Sign bit is O for positive number, 1 for
negative number

e Mantissa represented as a fractional
value, using signed magnitude

m Normalized to begin with 0.1

m Leading “1” is assumed, and is not
explicitly stored (called a hidden bit)

e Exponent represented using excess 128
(base assumed to be 2)

m 7.6875,,

111.1011,
0.1111011, x 23

= 0.1111011, x 2131-128
=0 10000011 11101100000...0pc 1,

2 Fall 1998, Lecture 23

IEEE 754 Floating Point Standard

sign exponent mantissa

S e f

<— 8 hits —»>= 23 bits —

m value = (-1)s 1.f x 2e-1%7

¢ Sign bit is 0 for positive number, 1 for
negative number

¢ Mantissa represented as a fractional
value, using signed magnitude

m Normalized to begin with 1.xxxxx

m Leading “1” is assumed, and is not
explicitly stored (called a hidden bit)

¢ Base assumed to be 2

e Exponent represented using excess 127

m 7.6875,, =111.1011,
=1.111011, x 22
= 1.111011, x 2129-127
=0 10000001 11101100000...0;cc 1,

3 Fall 1998, Lecture 23

Table 8.2 The IEEE 754 and DEC floating point formats

s e f I[EEE DEC
I|1...11 | 1..11
: : : NaN
1 [1...11 IOOIP
1 [1...110...00) - numbers
1/1...10 | 1...10
: : : numbers
1 @...01 1...01
1{0...00 [1...11
: . : denormals

: : reserved
1{0...00]0...01
1 (0...00 | 0...00 -0
0]0...00 [0...00 +0
0}0...00 | 0...01

: : denormals 0
0]1]0...00 |1 11
0j0...01

: anything | numbers
011...10

0 1...11 0...00 +00 numbers
0 1...11 0...01

NaN

4 Fall 1998, Lecture 23

DEC vs. IEEE Floating Point

m In the DEC format, we can represent
e Zero — exponent of 0...0
e Positive nums w/ exponents —127 to +127

e Negative nums w/ exponents —127 to +127

m In the IEEE format, we can represent
e Zero — expon. of 0...0, mantissa of 0...0

e Positive nums w/ exponents —126 to +127

m Positive infinity with exponent +128,
mantissa of 0...0

m NAN with exponent +128, mantissa other
than 0...0

o Negative nums w/ exponents —126 to +127
m Negative infinity with exponent +128,
mantissa of 1...1

m NAN with exponent exponent +128,
mantissa other than 1...1

e Denormals (numbers close to zero) with
exponent of 0...0

5 Fall 1998, Lecture 23

IEEE 754 Floating Point Standard
(cont.)

sign exponent mantissa

S e f

<— 8 hits —»>= 23 bits ——»

m Additional support for representing
numbers very close to zero (denormals)

value = (-1)s 0.f x 2126

Sign bit as before

Exponent assumed to be —126, resented
as 0...0 (base assumed to be 2)

Mantissa need not be normalized

m Value such as 1.0 x 2139 can be
represented as 0.0001 x 2-126

6 Fall 1998, Lecture 23

IEEE 754 Floating Point Standard
(cont.)

sign exponent mantissa

S e f

<+ 10 bits »=

53 bits —

m A double precision format, shown above,
is also available

e value = (1) 1.fx 2¢e-1023
¢ Sign bit as in single precision

e Mantissa in single precision
m Normalized to begin with 1.x

m Leading “1” is assumed, and is not
explicitly stored (called a hidden bit)

e Exponent represented using excess 1023
(base assumed to be 2)

7 Fall 1998, Lecture 23

Homework #5 — Due 11/9/98 (Part 2)

2. Convert to IEEE 754 floating point single
precision format, showing your work as
you convert between decimal and binary:

-18.375

Fall 1998, Lecture 23

