
1 Fall 1998, Lecture 24

SPARC Overview

n The SPARC CPU, used in Sun/4
workstations, has a RISC LOAD / STORE
architecture

● All arithmetic and logical operations use
either operands in registers, or immediate
values

● “ld” (load) and “st” (store) instructions are
used to access memory

● Memory is byte-addressable, but each ld &
st operates on 32 bits

n The SPARC has 32 32-bit registers for
use by the programmer

n The SPARC has a small instruction set,
and a limited number of addressing
modes

● Each instruction is 32 bits wide

2 Fall 1998, Lecture 24

SPARC Registers

n The SPARC has 32 registers for use by
the programmer

● “%” indicates “register” in the “as”
assembler (the assembler that we will be
using)

● Each register is 32 bits wide

n The registers are divided into 4 sets:

● Global registers (%g0 – %g7) are used
like global variables
n %g0 is permanently set to zero

● Local registers (%l0 – %l7) are used like
local variables within a subroutine

● In registers (%i0 – %i7) and out registers
(%o0 – %o7) are used for subroutine
parameter passing
n %o6 and %o7 are reserved for special

uses, and should not be used by the
programmer

3 Fall 1998, Lecture 24

SPARC Instruction Formats

4 Fall 1998, Lecture 24

SPARC Addressing Modes

n Arithmetic instructions operate on either
three registers, or two registers and an
immediate value

add %l1,%l2,%l3 ! %l3 = %l1 + %l2

add %l1,100,%l3 ! %l3 = %l1 + 100

● Note order — first two operands are
source, last operand is destination

● Immediate values (constants) are written
as simple numbers, must be 2nd operand

n “ld” (load) and “st” (store) instructions
operate on a pointer and a register

ld [%l1+4],%l5 ! %l5 = M[%l1+4]

ld [%l1+%l2],%l5 ! %l5 = M[%l1+%l2]

● Pointer can be either value in register
plus a constant, or sum of two register
values

● Second operand can be 0 or %g0

5 Fall 1998, Lecture 24

SPARC Arithmetic and Logical
Instructions (Partial List)

n Basic arithmetic instructions

add integer addition

addcc same, but set condition codes

sub, subcc integer subtraction…

● Plus instructions for extended precision

● There is no multiply or divide instruction!

n Basic logical instructions

and, andcc bitwise and

andn, andncc same, but with op2’

or, orcc, orn, orncc bitwise or

xor, xorcc, xorn, xorncc bitwise xor

n Plus shift instructions, and instructions
for floating-point arithmetic

6 Fall 1998, Lecture 24

SPARC Synthetic Instructions
(Partial List)

n Synthetic instructions are instructions
recognized by the assembler, that are
actually implemented in machine
language by other instructions

n clr (clear)

clr %l2 or %g0,%g0,%l2

n inc (increment)

inc %l2 add %l2,1,%l2

n mov (move)

mov %l2,%l3 or %g0,%l2,%l3

mov 300,%l3 or %g0,300,%l3

n set (load register with address)

set addr,%l3 varies…

n Plus others not shown here…

7 Fall 1998, Lecture 24

The “set” Synthetic Instruction

n We have been using the “set” instruction
to load an address into a register:

set msg, %o0 ! load address of "msg"

n But — why not use a “ld” instruction??

load msg, %o0 ! load address of "msg"

● This doesn’t work, because a “ld”
instruction can only load immediate
values up to 13 bits wide, and all
addresses are 32 bits wide

n So we use a “set” synthetic instruction,
which the assembler implements as:

sethi #hi(msg), %o0 ! load address of "msg"
or %o0, #lo(msg), %o0

● “sethi” loads a 22 bit immediate value into
the 22 most significant bits of a register,
and clears the 10 least significant bits

● #hi() = 22 msbits #lo() = 10 lsbits
8 Fall 1998, Lecture 24

SPARC Assembler Programs

n We will use the assembler “as” on the
Sun computer nimitz.mcs.kent.edu

● This is not the same assembler as the
one used in Maccabe

n General structure of programs:

● One instruction per line

● Labels are specified at the beginning of
the line, followed by a colon (“:”)

● Comments are prefaced with an
exclamation point (“!”), and last until the
end of the line

● C-style comments (“/* … */”) may also be
used

n Assembler directives (pseudo-ops) begin
with a period (“.”)

9 Fall 1998, Lecture 24

A Simple SPARC Assembler Program

.data
msg:

.ascii "Value is '%c'\n\0" ! string for printf

.text

.global _main ! main must be global

.global _printf ! linker will find printf
_main:

save %sp, -64, %sp ! space to save registers

mov "a", %o1 ! load an 'a' to be printed
set msg, %o0 ! load address of "msg"
call _printf ! call printf to print out
nop ! the character in %o1

add %o1, 1, %o1 ! convert 'a' into 'b'
set msg, %o0 ! load address of "msg"
call _printf ! call printf to print out
nop ! the character in %o1

sub %o1, 040, %o1 ! convert 'b' into 'B'
set msg, %o0 ! load address of "msg"
call _printf ! call printf to print out
nop ! the character in %o1

mov 1, %g1 ! exit request
ta 0 ! trap (return) to Unix

10 Fall 1998, Lecture 24

Notes on Simple Program

n Uses .data, .bss, and .text segment like
the ones discussed in Maccabe

● Initialized data: .byte, .word, .ascii

● Uninitialized data: .skip

n “.global” marks a symbol as global

● Every program must include a global
symbol “_main”, which is where loader
will begin executing the program

n Parameters are passed to printf in %o0
(pointer to format) and %o1 (character)

n Things I can’t explain quickly…

● Always include “save…” at beginning of
programs, and “mov…” and “ta…” at end
of programs

● For now, always include “nop” (no
operation) after a subroutine call

