
1 Fall 1998, Lecture 26

Filling the Delay Slot

n The SPARC call and branch instructions
are delayed control transfer instructions

● A delayed control transfer instruction
changes the Program Counter (recall that
the PC contains the address of the next
instruction to be executed) after the next
instruction has already been fetched
n This is an effect of pipelining, which we

will study in a few weeks

● The instruction after the delayed control
transfer instruction is called the delayed
instruction, and is said to fill the delay slot

● Since the delayed instruction has already
been fetched before the PC is changed,
that means that any instruction following
a call or branch instruction is always
executed:
n before going to the called subroutine, or

n before going to the target of the branch

2 Fall 1998, Lecture 26

Filling the Delay Slot (cont.)

n Filling the delay slot with a “nop” avoids
confusion, but wastes an instruction:
call _printf
nop
mov 1, %g1

n Since the delayed instruction is actually
executed before the call or branch
occurs, the delay slot can be filled more
effectively by moving another instruction
into the delay slot
call _printf ! call printf to print out
mov 1, %g1 ! exit request

● Think carefully about which instruction to
move, though!!

● Do not put an instruction that sets the
condition codes in the delay slot if the
branch needs those condition codes

● Do not put a branch, call, or set
instruction in a delay slot

3 Fall 1998, Lecture 26

Finding Largest Integer in an Array
(From Last Time)

.data
arr: .word 1,45,-16,23,38,17 ! int arr[6] = {...}
msg: .ascii "Value is %d\n\0"

.text

.global _main ! main must be global

.global _printf ! linker will find printf
_main:

save %sp, -64, %sp ! space to save registers

mov 0, %l0 ! %l0 (counter) = 0
set arr, %l1 ! %l1 is base of arr
mov 0, %l2 ! %l2 (index) = 0
ld [%l2+%l1],%l3 ! %l3 (maxnum) = arr[0]

for:cmp %l0,6 ! if (counter < 6) enter loop
bge end ! otherwise print answer
nop
ld [%l1+%l2],%l4 ! %l4 (temp) = arr[index]
cmp %l4,%l3 ! if (arr[index} > maxnum)
ble ok
nop
mov %l4,%l3 ! max num = arr[index]

ok: inc %l0 ! counter++
add %l2,4,%l2 ! index = index + 4
ba for
nop

4 Fall 1998, Lecture 26

Assembling a SPARC Assembler
Program

n We will use the C compiler “gcc” (which
calls the SPARC assembler “as”) to
assemble our programs as follows:

nimitz> gcc –g –o file file.s

● where file.s is the source file

● The “–g” switch includes debugging
information for the “gdb” debugger

n When “gcc” is used to compile a C
program:

● It first translates the C program into
assembly language, placing the code in a
file named file.s
n To see that file, type “gcc -S file.c”

● It then calls “as” to assemble that file and
produce a .o file

n If “gcc” is given a file with a “.s”
extension, it calls “as” directly

5 Fall 1998, Lecture 26

Debugging a SPARC Assembler
Program

n We will use the debugger “gdb” to debug
our programs as follows:

nimitz> gdb file

● where file is the object file

● Note — the program must have been
assembled using the “–g” switch, which
adds debugging information to the file

n Useful “gdb” commands:

● b func sets breakpoint at beginning
of function func

● b *addr sets breakpoint at addr

● d bnum deletes breakpoint bnum

● r run the program

● c continue (after break)

6 Fall 1998, Lecture 26

Debugging a SPARC Assembler
Program (cont.)

n Useful “gdb” commands (cont.):

● x/w addr examine word at addr

● x/i $pc examine contents of program
counter as an instruction

● p $reg print contents of register reg

● display/i $pc continuous display of pc

● display $reg continuous display of reg

● undisplay n stop display of item n in
display list

● si step through next instruction,
without going inside subroutines

● ni step through next instruction or
subrouine call

7 Fall 1998, Lecture 26

Homework #5 — Due 11/9/98 (Part 3)

3. Write a program in SPARC assembly
language to determine if an integer is odd
or even as follows:

● Prompt the user to enter a positive integer,
using printf. Use a loop to read in the
integer using scanf, stopping when a zero
or negative value is read in.

● Determine whether the integer is odd or
even, and print out that result, using printf
n Hint: use “and” or “or” as appropriate to

mask out all but the lsb, then branch based
on the result

● Use good programming style & comments.

● This program must be your own work.

● Email your program to “wmiao1@
kent.edu” by 11am on 11/9/98.

This program counts 3/5 of this hw grade.
(This is the last question on Homework #5)

