
1 Fall 1998, Lecture 27

I/O Devices
(Review)

n A typical computer system is organized
as follows:

n The I/O (input / output) devices are
accessed through registers in much the
same manner as the memory is
accessed

I/O busmemory busmemory CPU I/O
devices

CPU I/O Bus

data control status

printer controller

printer

2 Fall 1998, Lecture 27

Communicating With a Keyboard
(Review)

n A particular keyboard communicates with
the CPU as follows:

● A status register is addressed by the CPU
at memory location 200.  Bit 7 (little
endian addressing) is used to indicate
that a character is available.  If so, that bit
is 1; otherwise, it is 0.  Other bits serve
other purposes.

● A data register, addressed by the CPU at
memory location 201, stores the
character typed on the keyboard.

n Assembly code:

top: LOAD R0,200 ; read status reg.
AND R0,R0,#80H  ; check bit 7
BZ top ; loop until it’s 1
LOAD R9,201 ; read data
JUMP top ; loop forever

3 Fall 1998, Lecture 27

Programmed I/O Using UARTs

n In programmed I/O, the program (CPU)
is in direct control of the I/O

n The actual hardware element responsible
for the I/O is a UART — a Universal
Asynchronous Receiver / Transmitter

● Can both transmit and receive

● Transfers characters in serial fashion
between a CPU and an external I/O
device (e.g., keyboard, printer, modem)

● Uses 4 (memory-mapped) registers:
n Control register — specifies the

communication method (bits to set
transmission speed, parity, etc.)

n Status register — maintains status of
UART (transmit register full, receive
register full, various errors, etc.)

n Transmit register — holds next character
to send

n Receive register — holds last character
received

4 Fall 1998, Lecture 27

Reception using a UART

n Status register (STATUS)

● Bit 1 = 1    receive register (RCV) full

● Bit 1 = 0    receive register (RCV) not full

n Internal operation of the UART

● Bit 1 of status register initially set to 0

● When new value is received
n Value is stored in receive register

n Bit 1 is set to 1

● When value is read from receive register
n Bit 1 is set to 0

n Program receiving characters

● Example receiving 8-bit value into R3

wait_rcv: LOAD.b R2,STATUS
AND R2,R2,#2
BRZ wait_rcv
LOAD.b R3,RCV



5 Fall 1998, Lecture 27

Transmission using a UART

n Status register (STATUS)

● Bit 0 = 1    transmit register (XMIT) full

● Bit 0 = 0    transmit register (XMIT) not full

n Internal operation of the UART

● Bit 0 of status register initially set to 0

● When new value appears in transmit
register
n Bit 0 is set to 1

n Value is transmitted
n Bit 0 is set to 0

n Program transmitting characters

● Example sending 8-bit value in R3

wait_snd: LOAD.b R2,STATUS
AND R2,R2,#1
BRNZ wait_snd
STORE XMIT,R3

6 Fall 1998, Lecture 27

Interrupts

n An interrupt is a signal generated by a
device when it needs the CPU’s attention

● If a UART supports interrupts:
n A UART can generate an interrupt

whenever it receives a character

n Interrupts can generally be enabled or
disabled under software control (through a
bit in the control register)

n CPU checks for interrupts after each
instruction execution

● When an interrupt occurs:
n Program control is transferred to the

appropriate interrupt handler

n That interrupt handler processes the
interrupt, and clears the interrupt request

n The program that was interrupted then
resumes its normal execution

● Interrupts can occur at any time!

7 Fall 1998, Lecture 27

Interrupts (cont.)

n Before control transfers to the interrupt
handler, the CPU saves the PC and
PSW

● PC = Program Counter

● PSW = Processor Status Word
n Condition codes

n Interrupt mask

● Restored after interrupt handler finishes

n The interrupt handler must save and
restore all the general-purpose registers

n With a UART, when the interrupt handler
reads from the receive register, the
interrupt gets cleared

● What if interrupt handler gets interrupted?

● Solution — Use special instruction to set
interrupt mask bit in PSW to disable
interrupts while in interrupt handler

8 Fall 1998, Lecture 27

Handling Multiple Interrupts

n It may be necessary for more than one
device to interrupt the CPU

● Selective masking — disable interrupts
from certain selected devices

● Device identification — identify the device
that has an enabled and unserviced
interrupt

● Priority scheme — if more than once
device has an enabled and unserviced
interrupt, choose which one to service
first

● Dispatching — transfer control to the
proper interrupt handling routine

n Interrupt Mask in PSW enables/disables
all interrupts

● Add Interrupt Mask Register, with
enable/disable bit corresponding to each
device



9 Fall 1998, Lecture 27

Handling Multiple Interrupts (cont.)

n Software polling

● Interrupt signal to CPU is logical or of
individual interrupt signals

● Device identification, prioritization, and
dispatching must be handled by software
n Add an Interrupt Status Register with bit

for each device

n Software has to “poll” each bit in this ISR
to see which device has an unserviced
interrupt

n Software prioritizes those interrupts, and
branches to appropriate interrupt handler

device 3

device 2

device 1

device 0

CPU

10 Fall 1998, Lecture 27

Handling Multiple Interrupts (cont.)

n Daisy chaining

● Interrupt request is sent to CPU, going
through any neighbors to the right

● CPU sends an “identify yourself” request
back through the devices

● When it receives that “identify yourself”
request, the interrupting device sends its
ID back to the CPU
n It does not send the “identify yourself”

request on to lower-priority devices

n Devices closer to CPU have higher priority

● CPU then services that interrupt

n Interrupt controller

● Sits between the devices and the CPU

● Prioritizes the requests, identifies the
device, and sends that request to CPU

device 3 device 2 device 1 device 0 CPU


