Chapter 9's Simple Machine

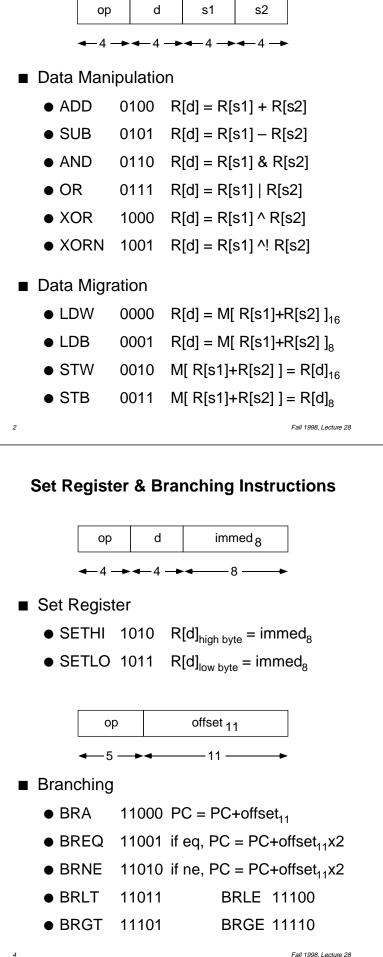
- Uses 16-bit word
- 16 general-purpose registers named R0 through R15
 - R0 is hardwired to contain the value 0

4 types of instructions

- Data migration (load, store, ...)
- Data manipulation (add, sub, ...)
- Loading immediate values into registers
- Unconditional and conditional branching
- 3 machine language instruction formats
 - 3-register format used by data transfer and data manipulation instructions
 - Immediate format
 - Branching format

Data Migration & Manipulation Instructions (cont.)

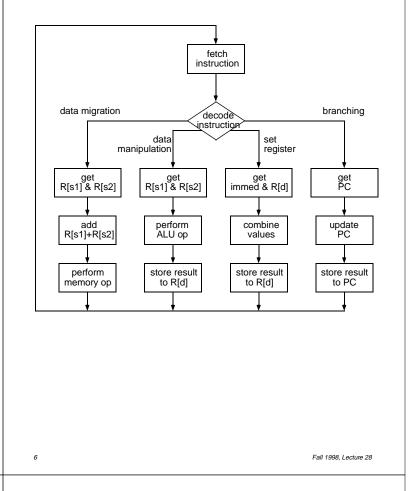
- The format for these instructions uses
 - 4 bits to specify the opcode
 - 4 bits to specify each register
- Data manipulation instructions
 - Each line here lists:
 - assembler mnemonic,
 - the opcode, and
 - pseudocode specifying the operation
 - Op dest, s1, s2


3

- Same order as text so far, backwards from SPARC assembler on nimitz
- Data migration (load & store) instructions
 - Think of R[s1] as the base register, and R[s2] as the displacement
 - Word version and byte version of each
 - LDB does sign extension, STB stores least significant byte

Fall 1998. Lecture 28

Fall 1998, Lecture 28


Data Migration & Manipulation Instructions

Set Register & Branching Instructions (cont.)

- "set register" instructions
 - 4 bits for opcode, 4 bits to specify register
 - 8 bits for immediate value
 - Set the high or low byte of the register with the immediate value
 - The other byte is not affected
- Unconditional and conditional branch instructions
 - BRA (branch always = unconditional jump)
 - BREQ, etc. (conditional branch)
 - These instructions specify an offset, rather than an absolute address
 - This is the PC-relative addressing mode
 - Note that 2x that offset is used since branch will always go to a word boundary

Instruction Decode / Execute Loop

Instruction Decode / Execute Loop (cont.)

Fetch instruction

5

- Get the next instruction from memory, store it in the Instruction Register (IR), and increment the PC
- Decode instruction
 - Decode the opcode field of the IR to determine what kind of instruction is being executed
- Execute instruction
 - Data manipulation
 - Use ALU to perform operation
 - Data migration
 - Combine R[s1] and R[s2] using ALU
 - Load from or store to memory
 - Set register
 - Combine immed with specified byte of R[d]

Implementation of Simple Machine

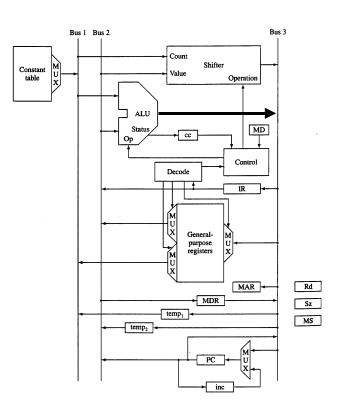


Diagram from Computer Systems, Maccabe, Irwin 1993

8

Fall 1998, Lecture 28