

Implementation of Simple Machine (Review)

Implementation of Simple Machine (cont.)

- Data manipulation instructions require:
 - Two source buses, one for each ALU input
 - A result bus for the ALU output (missing line on diagram in text!)
 - Result can go through MUX to any one of 16 general purpose registers, and can come back to any one of the ALU inputs
- Data migration instructions require:
 - MDR and MAR to access memory
 - ALU must add R[s1] and R[s2] to produces address for MAR
 - MDR

4

- For load, data from memory goes into MDR, then through bus 3 into register
- For store, data goes to MDR from register (uses bus 2 —backwards from other registers!

Data Migration & Manipulation Instructions (Review)

ор	d	s1	s2	
← 4 →← 4 →← 4 →				

Data Manipulation

1

- ADD 0100 R[d] = R[s1] + R[s2]
- SUB 0101 R[d] = R[s1] R[s2]
- AND 0110 R[d] = R[s1] & R[s2]
- OR 0111 R[d] = R[s1] | R[s2]
- XOR 1000 R[d] = R[s1] ^ R[s2]
- XORN 1001 R[d] = R[s1] ^! R[s2]
- Data Migration

3

- LDW 0000 R[d] = M[R[s1]+R[s2]]₁₆
- LDB 0001 R[d] = M[R[s1]+R[s2]]₈
- STW 0010 M[R[s1]+R[s2]] = R[d]₁₆
- STB 0011 M[R[s1]+R[s2]] = R[d]₈

Fall 1998, Lecture 29

Fall 1998, Lecture 29

 $\begin{array}{l} \mbox{Reg[src1]} \rightarrow \mbox{bus1} \\ \mbox{Reg[src2]} \rightarrow \mbox{bus2} \\ \mbox{select} \ \mbox{ALU} \ \mbox{add} \ \mbox{operation} \\ \mbox{ALU} \rightarrow \mbox{bus3} \\ \mbox{load} \ \mbox{Reg[dest]} \end{array}$

7

Diagram from Computer Systems, Maccabe, Irwin 1993

inc

8

Fall 1998, Lecture 29

Data Migration Instructions ("load" Shown Here)	Branching Instructions	
 Cycle n+1 Reg[src1] → bus1 Reg[src2] → bus2 select ALU add op ALU → bus3 load MAR clear MD, set MS, set Rd, set Sz to (lsb of op)' Cycle n+2 m while (MD == 0) do nothing Cycle m+1 MDR → bus3 load R[d] clear MS 	 Cycle n+1 IR → bus2 #5 → bus1 select left shift with zero fill shifter → bus3 load temp2 Cycle n+2 temp2 → bus2 #4 → bus1 select right shift with sign extend shifter → bus3 load temp1 Cycle n+3 temp1 → bus1 PC → bus2 select ALU add operation 	
9 Fall 1998, Lecture 29	$ALU \rightarrow bus3$ load PC if branch condition is met	
Homework #6 — Due 11/30/98		
 What problems might occur if one interrupt is allowed to interrupt the interrupt handler of another interrupt? Compare the following three methods for loading immediate values into a register: (i) the MOVE instruction discussed in class, (ii) the SPARC MOV instruction, and the Chapter 9 Simple Machine's SETLO instruction. (This question counts double.) 		
 3. In the datapath of the Chapter 9 Simple Machine, why does the PC value need to go to both Bus 2 and Bus 3? 4. How does the μPC and μIR compare to the "real" PC and IR? 		
(This is the last question on Homework #6)		