Implementation of Simple Machine
With Hardwired Control

Bus1 Bus2 Bus 3

Count

Shifter "
Operation

) .

Constant
table

XS/
g
&

Decode

P& 3

General- (M
purpose (U fe—1
registers X

NCZ{/XCZ

temp;
temp,

B
| 1

Diagram from Computer Systems, Maccabe, Irwin 1993

Fall 1998, Lecture 30

Interpreting a C Program

m Suppose we want to compile and run a
program written in a high-level
programming language (e.g.,C, C++)

e The C compiler translates each high-level

statement into a set of assembly
language instructions for that CPU

e The assembler translates each assembly
language instruction into a machine
language instruction

m In a CPU with a hardwired controller:

e Each machine language instruction is
decoded and executed

m In a CPU with a microcoded controller:

e Each machine language instruction is
defined by a set of microinstructions

e Each microinstruction is decoded and
executed

Fall 1998, Lecture 30

Types of Control

m Hardwired control

e The controller decodes the contents of IR
and the ALU status, and uses that
information to control:

m register muxes, ALU operation, and shifter
m register loads and bus access (not shown)

m Microprogrammed control

e Each machine language instruction is
implemented by a set of microinstructions
m The control store holds the full set of
microinstructions (the microprogram)
m The pIR (Microlnstruction Register) holds
the current microinstruction

m The uPC (Micro Program Counter) holds
the address (in the control store) of the
next microinstruction to be executed

e The pcontroller decodes the contents of
IR and the ALU status, along with the
contents of the pIR, and uses that info...

Fall 1998, Lecture 30

Implementation of Simple Machine
With Microcoded Control

Bus | Bus2 Bus 3

Constant M

table

Count
Vatue
X '——.
ALU

Shifter

Operation

Control signals

Pt

-

ucontrol

g’
g

5

General-

registers

i

L

Control
store

MDR =
Rd
— temp,
S

Diagram from Computer Systems, Maccabe, Irwin 1993

Fall 1998, Lecture 30

Microcode for “ADD” Instruction

ifetch:
PC - MAR, READ word
while IMD
MDR - IR, inc PC

decode:
SHIFT right (#11, IR) - uBR
MAP pPC

add:
ALU and (#15, IR) - src2
SHIFT right (#4, IR) - temp2
ALU and (#15, temp2) - srcl
SHIFT right (#4, temp2) - temp2
ALU and (#15, temp?2) - dest

ALU add.cc (Reg]srcl], Reg[src2]) - Reg[dest]
branch ifetch

Fall 1998, Lecture 30

Writing a Microprogram in
Microassembly Language

m A microprogram is written in a
microassembly language, and stored in
the control store (a ROM or PROM)

m Each microinstruction can (but does not
have to) contain:

o A label
m Same as in assembly language programs

e A control field
m A “while” or “if” clause

¢ An operation field
m List of comma-separated micro-operations

e A branch field
m To implement branches

Fall 1998, Lecture 30

Micro-Operation Grammar

<micro op> :: <memory op> | <reg op> | inc PC |
MAP puBR

<mem op>:: READ word | READ byte | WRITE word
| WRITE byte

<reg op> :: <bus 3 source> - <bus 3 dest> |
<bus 2 source> - MDR

<bus 3 source> :: <shift res> | <alu res> | MDR | PC

<bus 3 dest> :: UBR | IR | src2 | dest | Reg[dest] |
srcl | MAR | templ | temp2 | PC

<shift res> :: SHIFT (shift op) (<bus 1 source>, <bus
2 source>)

<shift op> :: left | right | right arith

<alu res> :: ALU <alu op> (<bus 1 source>, <bus 2
source>)

<alu op> :: add | sub | and | or | xor | xorn | add.cc |
sub.cc | and.cc | or.cc | xor.cc | xorn.cc

<bus 1 source> :: <constant> | Reg[srcl] | templ
<bus 2 source> :: IR | Reg[src2] | temp2 | PC

<constant> :: #n

Fall 1998, Lecture 30

Hardwired vs. Microprogrammed
Control

m Hardwired control
e Simple to implement

¢ Fast (no extra level of instruction fetching,
decoding, etc.)

m Microprogrammed control

¢ Flexible — easier for designer to modify
(microcode is stored in ROM, which can
be changed fairly easily)

m Microcode is classified as firmware — in
between software and hardware

o Allows convenient hardware / software
tradeoffs — what the hardware doesn't do
(e.g., multiplication), do in microcode!

m Supports families of machines with
different price / performance tradeoffs

e Provides support for very complex
instructions

Fall 1998, Lecture 30

