
1 Fall 1998, Lecture 30

Implementation of Simple Machine
With Hardwired Control

Diagram from Computer Systems, Maccabe, Irwin 1993

2 Fall 1998, Lecture 30

Interpreting a C Program

n Suppose we want to compile and run a
program written in a high-level
programming language (e.g.,C, C++)

● The C compiler translates each high-level
statement into a set of assembly
language instructions for that CPU

● The assembler translates each assembly
language instruction into a machine
language instruction

n In a CPU with a hardwired controller:

● Each machine language instruction is
decoded and executed

n In a CPU with a microcoded controller:

● Each machine language instruction is
defined by a set of microinstructions

● Each microinstruction is decoded and
executed

3 Fall 1998, Lecture 30

Types of Control

n Hardwired control

● The controller decodes the contents of IR
and the ALU status, and uses that
information to control:
n register muxes, ALU operation, and shifter

n register loads and bus access (not shown)

n Microprogrammed control

● Each machine language instruction is
implemented by a set of microinstructions
n The control store holds the full set of

microinstructions (the microprogram)

n The µIR (MicroInstruction Register) holds
the current microinstruction

n The µPC (Micro Program Counter) holds
the address (in the control store) of the
next microinstruction to be executed

● The µcontroller decodes the contents of
IR and the ALU status, along with the
contents of the µIR, and uses that info…

4 Fall 1998, Lecture 30

Implementation of Simple Machine
With Microcoded Control

Diagram from Computer Systems, Maccabe, Irwin 1993

5 Fall 1998, Lecture 30

Microcode for “ADD” Instruction

ifetch:

PC → MAR, READ word

while !MD

MDR → IR, inc PC

decode:

SHIFT right (#11, IR) → µBR

MAP µPC

add:

ALU and (#15, IR) → src2

SHIFT right (#4, IR) → temp2

ALU and (#15, temp2) → src1

SHIFT right (#4, temp2) → temp2

ALU and (#15, temp2) → dest

ALU add.cc (Reg[src1], Reg[src2]) → Reg[dest]
branch ifetch

6 Fall 1998, Lecture 30

Writing a Microprogram in
Microassembly Language

n A microprogram is written in a
microassembly language, and stored in
the control store (a ROM or PROM)

n Each microinstruction can (but does not
have to) contain:

● A label
n Same as in assembly language programs

● A control field
n A “while” or “if” clause

● An operation field
n List of comma-separated micro-operations

● A branch field
n To implement branches

7 Fall 1998, Lecture 30

Micro-Operation Grammar

<micro op> :: <memory op> | <reg op> | inc PC |
MAP µBR

<mem op> :: READ word | READ byte | WRITE word
| WRITE byte

<reg op> :: <bus 3 source> → <bus 3 dest> |
<bus 2 source> → MDR

<bus 3 source> :: <shift res> | <alu res> | MDR | PC

<bus 3 dest> :: µBR | IR | src2 | dest | Reg[dest] |
src1 | MAR | temp1 | temp2 | PC

<shift res> :: SHIFT (shift op) (<bus 1 source>, <bus
2 source>)

<shift op> :: left | right | right arith

<alu res> :: ALU <alu op> (<bus 1 source>, <bus 2
source>)

<alu op> :: add | sub | and | or | xor | xorn | add.cc |
sub.cc | and.cc | or.cc | xor.cc | xorn.cc

<bus 1 source> :: <constant> | Reg[src1] | temp1

<bus 2 source> :: IR | Reg[src2] | temp2 | PC

<constant> :: #n
8 Fall 1998, Lecture 30

Hardwired vs. Microprogrammed
Control

n Hardwired control

● Simple to implement

● Fast (no extra level of instruction fetching,
decoding, etc.)

n Microprogrammed control

● Flexible — easier for designer to modify
(microcode is stored in ROM, which can
be changed fairly easily)
n Microcode is classified as firmware — in

between software and hardware

● Allows convenient hardware / software
tradeoffs — what the hardware doesn’t do
(e.g., multiplication), do in microcode!
n Supports families of machines with

different price / performance tradeoffs

● Provides support for very complex
instructions

