
1 Fall 1998, Lecture 31

Data Manipulation Instructions
(“add” Shown Here) (Review)

n Cycle 1

PC → bus3, load MAR
clear MD, set MS, set Rd, set Sz

n Cycle 2…n-1

while (MD == 0) do nothing

n Cycle n

MDR → bus3, load IR
inc → PC, load PC
clear MS

n Cycle n+1

Reg[src1] → bus1
Reg[src2] → bus2
select ALU add operation
ALU → bus3
load Reg[dest]

fetch instruction

decode and execute

2 Fall 1998, Lecture 31

Speeding up the Fetch / Execute Cycle
Using Instruction Caching

n A small, fast, memory called the cache
sits between the CPU and memory

n When the CPU needs data or an
instruction, it asks the memory

n The cache intercepts that request, and
looks in the cache first for the data

● If it’s there (this is called a hit), the data is
fetched from the cache

● If it’s not there (this is called a miss), the
cache sends the request to the memory,
and the data is fetched from the memory
n On the way back to the CPU, it’s also

stored in the cache as well

CPU cache memory

address

data

address

data

3 Fall 1998, Lecture 31

Speeding up the Fetch / Execute Cycle
Using Instruction Caching

n Why does caching work?

● Principle of Locality of Reference says:
n (Temporal locality) Once a piece of data

has been fetched, it’s likely that it will be
needed again in the near future

n Further improvements:

● Principle of Locality of Reference says:
n (Spatial locality) Once a piece of data has

been fetched, it’s likely that others near it
will be needed in the near future

● Instead of just fetching that one piece of
data, fetch a whole block of data

● More on this in Computer Architecture,
along with details on how a cache
actually works

4 Fall 1998, Lecture 31

Speeding up the Fetch / Execute Cycle
Using Better Memories

n Normal execution

n Wide memories

● If memory cycle is 4x processor cycle,
make memory 4x wider
n Each memory fetch (taking same amount

of time as before) returns 4 instructions

n Process 4 instructions while fetching the
next 4 instructions

● Disadvantages:
n Writing to a single word is awkward

n Branches / jumps can cause problems

fetch 1 exe
1 fetch 2 exe

2

fetch 1–4 exe
1

exe
2

exe
3

exe
4

fetch 9–12

fetch 5–8 exe
5

exe
6

exe
7

exe
8

5 Fall 1998, Lecture 31

Speeding up the Fetch / Execute Cycle
Using Better Memories (cont.)

n Interleaved memories (see also p. 82)

● If memory cycle is 4x processor cycle,
use 4 banks of memory, with consecutive
words in different memory banks (hence
the term “interleaved” memories)
n Overlap memory accesses to each bank

● Disadvantages:
n Branches / jumps can cause problems

fetch 1 exe
1

fetch 2 exe
2

fetch 3 exe
3

fetch 4 exe
4

fetch 5 exe
5

fetch 6 exe
6

fetch 7 exe
7

fetch 8 exe
8

6 Fall 1998, Lecture 31

Speeding up the Fetch / Execute Cycle
Using Prefetching & Overlapping

n Instruction prefetching

● Put a FIFO queue (called an instruction
buffer) between instruction fetch logic and
instruction execute logic
n Whenever memory is idle, fetch the next

instruction and store it in instruction buffer

● Disadvantages:
n Branches / jumps can cause problems

n Overlapped execution

● Overlap execution of instruction i with
execution of instruction i + 1

fetch 1 exe
1

fetch 2 exe
2

fetch 3

7 Fall 1998, Lecture 31

Pipelined
Instruction Decode / Execute Loop

fetch
instruction

decode
instruction

get
operands

get
operands

update
PC

perform
ALU op

combine
R[s1]+R[s2]

concatenate
values

store result
to R[d]

perform
memory op

get
operands

store result
to R[d]

data migration branching

data
manipulation

set
register

fetch
stage

decode
stage

ALU
stage

store
stage

sto
1

ALU
1

dec
1

fet
1

sto
2

ALU
2

dec
2

fet
2

sto
3

ALU
3

dec
3

fet
3

sto
4

ALU
4

dec
4

fet
4

8 Fall 1998, Lecture 31

Pipelining

n Goal: finish executing one instruction
every clock cycle

n Divide the fetch / execute loop into
several (in this case, 4) pipeline stages

● Each instruction passes through all 4
stages in sequence

● Each instruction requires 4 clock cycles to
execute

n Once the pipeline gets filled,
in each clock cycle:

● A new instruction is fetched

● An instruction is decoded, and an ALU
operation performed

● An instruction’s result is stored, and the
instruction finishes its execution

