
1 Fall 1998, Lecture 32

Pipelined Instruction Decode / Execute
Loop (Review)

fetch
instruction

decode
instruction

get
operands

get
operands

update
PC

perform
ALU op

combine
R[s1]+R[s2]

concatenate
values

store result
to R[d]

perform
memory op

get
operands

store result
to R[d]

data migration branching

data
manipulation

set
register

fetch
stage

decode
stage

ALU
stage

store
stage

sto
1

ALU
1

dec
1

fet
1

sto
2

ALU
2

dec
2

fet
2

sto
3

ALU
3

dec
3

fet
3

sto
4

ALU
4

dec
4

fet
4

2 Fall 1998, Lecture 32

Pipeline Stalls

n If the needed instruction is not in the
cache, the fetch stage for that instruction
may take much longer than the other
stages (more than a single clock cycle)

● When this occurs, the pipeline stalls —
there is no activity until that stage can
continue

n In LOAD/STORE machines, the pipeline
will generally consider a memory-based
operand access as “completed” once we
start that memory access

● But — what if the next instruction needs a
value before the memory access for that
value has been completed?

sto
1

ALU
1

dec
1

fet
1

sto
2

ALU
2

dec
2

fet
2

sto
3

ALU
3

dec
3

fet
3

sto
4

ALU
4

dec
4

fet
4stall

stall

stall

stall

stall

stall

stall

stall

3 Fall 1998, Lecture 32

Data Hazards

n Two instructions are said to have a data
dependency between them if the second
uses the result of the first

n A problem in the pipeline due to a data
dependency is called a data hazard

n Two common data hazards:

● Write / read data hazard — one
instruction writes to a register, and a later
instruction uses (reads) that result

ADD R2, R3, R4

ADD R1, R2, R6

n Also useful if first instruction is a LOAD

● Write / write data hazard — one
instruction writes to a register, and a later
instruction writes to that same register

ADD R2, R3, R4
ADD R2, R5, R6

n Later instructions should get the last value
4 Fall 1998, Lecture 32

Handling Data Hazards

n Write / read data hazard example:
ADD R2, R3, R4

ADD R1, R2, R6

n Can be avoided with register interlocks

n Can also be avoided with data forwarding

fetch
inst 1

fetch
inst 2
get

R3,R4
get

R2,R6
add

R3,R4
add

R2,R6
store

into R2
store

into R1

fetch
inst 1

fetch
inst 2
get

R3,R4
get

R2,R6
add

R3,R4
add

R2,R6
store

into R2
store

into R1

slip slip

slip slip

slip slip

fetch
inst 1

fetch
inst 2
get

R3,R4
get

sum,R6
add

R3,R4
add

sum,R6
store

into R2
store

into R1

5 Fall 1998, Lecture 32

Handling Data Hazards (cont.)

n Register interlocks

● An instruction gets blocked until all its
source registers are loaded with the
appropriate values by earlier instructions

● A “valid / invalid” bit is associated with
each register
n During decode stage, destination register

is set to invalid (it will change)

n Decode stage blocks until all its source
(and destination) registers are valid

n Store stage sets destination register to
valid

n Data forwarding

● Output of ALU is connected directly to
ALU input buses

● Result of an ALU operation is now
available immediately to later instructions
(i.e., even before it gets stored in its
destination register)

6 Fall 1998, Lecture 32

Handling Branch Hazards

n Consider this example:

1) ADD …
2) BRA test
3) SUB …

…
10) test: MPY …

● Instruction 2 doesn’t update the PC until
the decode stage (and then does nothing
in the ALU and store stages

● What happens to instruction 3, which has
already been fetched?

n One answer — nullify any instructions
following a branch instructions that have
entered the pipeline

n Another answer — always execute the
one instruction always following the
branch (the instruction said to be in the
branch delay slot)

fet
3

sto
1

ALU
1

dec
1

fet
1

dec
2

fet
2

sto
3

ALU
3

dec
3

sto
10

ALU
10

dec
10

fet
10

7 Fall 1998, Lecture 32

Superpipelined & Superscalar
Machines(cont.)

n Superpipelined machine

● Increase the number of pipeline stages
even further

● Execution time of single instruction
remains the same, but pipeline
throughput increases

n Superscalar machine

● Perform several instructions in parallel

● CPU may contain:
n Branch unit, to do decoding and process

branch instructions
n Integer unit, to perform integer arithmetic

n Floating-point unit, to perform floating-
point arithmetic

n Integer and floating-point units work
independently, signal branch unit when
done (like memory does)

8 Fall 1998, Lecture 32

Superpipelined & Superscalar
Machines

n Normal pipelined machine:

n Superpipelined machine:

n Superscalar machine:

sto
1

ex
1

dec
1

fet
1

sto
2

ex
2

dec
2

fet
2

sto
1

ex
1

dec
1

fet
1

sto2
1

ex2
1

dec2
1

fet2
1

sto
2

ex
2

dec
2

fet
2

sto2
2

ex2
2

dec2
2

fet2
2

sto
3

ex
3

dec
3

fet
3

sto2
3

ex2
3

dec2
3

fet2
3

sto
1

ex
1

dec
1

fet
1

sto
2

ex
2

dec
2

fet
2

9 Fall 1998, Lecture 32

Homework #6 — Due 12/7/98

1. How do branches cause problems when
wide memories are used?

2. How do the level 1 cache, level 2 cache,
and main memory compare in size and
access time?

3. Suppose the operations that need to be
performed by one stage in a pipeline take
longer than those in the other stages.
Does this affect the pipeline? Explain.

4. Pipeline stalls and slips are pretty similar.
When does each occur, and how is the
pipeline affected by each?

5. Explain the difference between data
parallelism and control parallelism.

(This is the last question on Homework #7)

