
1 Fall 1998, Lecture 33

Parallel Processing

n Basic idea — speed up computation by
using many processing elements (PEs)

n Applications (Hayes, 1988)

● Long-range weather forecasting

● Geophysical exploration via seismic data
analysis

● Fluid flow analysis

● Medical diagnosis by computer-assisted
tomography

● Visual image processing

● Nuclear reactor modeling

● VLSI circuit design and simulation

n High-performance parallel computers are
often referred to as supercomputers

2 Fall 1998, Lecture 33

Classification of Parallel Machines

n Michael Flynn (1966)

● SISD — single instruction, single data

● SIMD — single instruction, multiple data

● MISD — multiple instruction, single data

● MIMD — multiple instruction, multiple data

n More recent (Stallings, 1993)

3 Fall 1998, Lecture 33

SIMD

n Single Instruction, Multiple Data

● Many PEs, each doing the same thing at
the same time, but on different pieces of
data
n Typically 1000s of PEs

● Example: 10,000 PEs, each computing
the wind chill for a location

● Often combined with a SISD host, which:
n broadcasts instructions to each SIMD PE,

n performs sequential operations (branches,
address calculation)

n Well suited for massive data parallelism
— a large amount of data spread across
a large number of PEs

● Poorly suited for control parallelism —
when if statements control the execution
of each PE, so that some PEs execute,
while others sit idle

4 Fall 1998, Lecture 33

SIMD Example

n Sum 100,000 numbers, using a SIMD
computer with 10,000 PEs

n Host splits 100,000 numbers into 10,000
subsets, sends one subset to each PE

n Each PE computes the sum of its subset
/* A is full array on host, AL is local array */
sum = 0;
for (i = 0 ; i < 10 ; i++) /* loop over each array */

sum = sum + AL[i]; /* sum the local arrays */

n PEs add the partial sums using a divide
and conquer approach
limit = 10000;
half = 10000;
repeat

half = half / 2; /* send vs. receive division */
if (Pn >= half && Pn < limit) send (Pn%half, sum);
if (Pn < half) sum = sum + receive();
limit = half; /* upper limit of senders */

until (half == 1); /* exit with final sum */

5 Fall 1998, Lecture 33

MIMD

n Multiple Instruction, Multiple Data

● Small number of PEs, maybe doing same
thing, maybe doing different things, but on
different pieces of data
n Typically 10s of PEs

n Well suited for control parallelism (PEs
that aren’t busy doing one thing can do
something else), poorly suited for data
parallelism (not enough PEs)

n Two key issues:

● How do the PEs share data?
n Shared memory — a single memory is

shared between all PEs (not very common)

n Distributed shared memory — each PE has
its own memory, and they send messages
containing data to others (more common)

● How do the PEs coordinate?
n Process for a bit, then synchronize…

6 Fall 1998, Lecture 33

Distributed-Memory MIMD Example
(often called “Distributed Computing”)

n Sum 100,000 numbers, using a
distributed-memory MIMD computer with
10 PEs

n Host splits 100,000 numbers into 10
subsets, sends one subset to each PE

n Each PE computes the sum of its subset
sum = 0;
for (i = 0 ; i < 10000 ; i++) /* loop over each array */

sum = sum + AL[i]; /* sum the local arrays */

n PEs add the partial sums
limit = half = 10;
repeat

half = half / 2; /* send vs. receive division */
if (Pn >= half && Pn < limit) send (Pn%half, sum);
else if (Pn < half) sum = sum + receive();
limit = half; /* upper limit of senders */

until (half == 1); /* exit with final sum */

● Receiving PE must stall until it receives a
message from sending PE

7 Fall 1998, Lecture 33

Parallel Processing at Kent State

n Motivation:

● SIMDs may be useful, but not many
companies build SIMDs anymore

● MIMDs aren’t very good for massive data
parallelism (not enough PEs)

n Solution: combine best features of SIMD
(massive data parallelism) with best
features of MIMD (control parallelism)

● ASC model, developed at KSU
n Base is SIMD — many simple PEs

n PEs can be active or inactive

n Active cells can perform search in
constant time (e.g., find all red cars)

● Multiple instruction stream ASC (MASC)
n New innovation — multiple instruction

streams — some PEs execute one
instruction stream, while other PEs
execute yet other instruction streams

8 Fall 1998, Lecture 33

Kent State MASC Model

n Many PEs provide massive data
parallelism, just like normal SIMDs

n Multiple instruction stream (IS)
processors supply different instructions
to various PEs, providing efficient control
parallelism, just like MIMDs

● Some PEs do then, others do else

n Supports associative computing

Memory PE

Memory PE

Memory PE

Memory PE

Instruction
Stream

1

Instruction
Stream

k

C
el

l I
nt

er
co

nn
ec

tio
n

N
et

w
or

k

IS
 In

te
rc

on
n

ec
tio

n
N

et
w

or
k

