Where is Moore's Law Heading?

- Moore's Law (second version), attributed to Intel founder Gordon Moore, says:
- The number of transistors on a chip will double every 18 months

What about other characteristics?

- According to the Semiconductor Research Corporation (details on next slide), the next 15 years will look like this:

Characteristic	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 6}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 2}$
Process Technology $(\mu \mathrm{m})$.250	.180	.150	.130	.100	.070	.050
Logic							
Tansistors (millions)	11	21	40	76	200	520	1400
Clock Speed $($ MHz)	750	1200	1400	1600	2000	2500	3000
Die Area $\left(m^{2}\right)$	300	340	385	430	520	620	750
Wiring Levels	6	$6-7$	7	7	$7-8$	$8-9$	9

- Semiconductor Industry Association, founded in 1977, is a trade association
- Some of SIA's wholly-owned subsidiaries:
- Semiconductor Research Corporation (SRC) supports applied (academic) research in design and process technologies
- Sematech, formed in 1987 as independent organization, now part of SIA, supports current needs in manufacturing (closely tied to industry)
- Microelectronic Advanced Research Corporation (Marco), formed in 1997, supports revolutionary solutions to technical problems by developing Focus Centers to solve problems that will impact the industry in 10-15 years - 50% funded by SIA, 25% by Sematech members, 25% by government

SIA Roadmap

Every few years (1992, 1994, 1997), the SIA publishes a "roadmap" for the semiconductor industry, charting industry trends for the next 15 years

- "The National Technology Roadmap for Semiconductors" is online at http:// notes.sematech.org/ntrs/Rdmpmem.nsf
- 1997 version is latest
- Estimates (hopefully) realistic targets
- Example:
- $0.25 \mu \mathrm{~m}$ chips are in production (industry)
- technology choices have been made for $0.18 \mu \mathrm{~m}$ chips (Sematech)
- several options need to be examined for $0.15 \mu \mathrm{~m}$ chips (federal programs)
- proof-of-concept being examined for $0.13 \mu \mathrm{~m}$ chips (SRC \& universities)
- long-rang plans for $0.10 \mu \mathrm{~m}$ chips (Marco)

Grand Challenges from 1997 Roadmap

Affordable scaling

- Historical 25-30\% cost reduction due to design innovation, device shrinks, wafer size increase, yield improvement, equipment utilization improvement
- Yields are near max
- Biggest contribution is decreased feature size (means more transistors, faster chips)
- Complexity is increasing, need new technologies and approaches

■ Affordable lithography below $100 \mu \mathrm{~m}$

- Ultraviolet lithography near physical limits
- New materials and structures
- Below $100 \mu \mathrm{~m}$, logic and memory on same chip, copper interconnects...

