Name:

CS 4/53201 Final Exam

Operating Systems

Wednesday 13 December 2000

- 1. At the beginning of the semester, I talked about how the operating system hides many of the details of the underlying hardware from the user.
 - a. The operating system makes use of (and can inspire) features of the CPU architecture. Briefly describe two specific features that a CPU architecture can provide, and explain how the operating system takes advantage of those features. (10 points)

b. The operating system can also hide limitations of the underlying hardware. Give <u>one</u> example of a limitation that is built into a machine, and how the operating system makes the user unaware that the limitation exists. (5 points)

- 2. One of the most important concepts examined in this class is the process.
 - a. Draw the five-state process model, and clearly label all states and transitions (a detailed explanation is not needed, just simple labels). (15 points)

			Nam	e:	
	b.	Explain the blocked, and	"blocked" state — what it means for the latest three who it would get unblocked. (10)	or a process to be blocked, why it wou points)	uld be
3.		e of the algor st Fit.	ithms that can be used for memory	management, partitioning in particula	ır, is
	a.	Briefly expla	ain this algorithm. (10 points)		
	b.	Explain why	this algorithm may not be the best	choice for memory management. (5)	points)
4.		central compo NIX).	onent of any file system is the file of	descriptor (which is called the "inode"	'in
	a.	Circle those points)	items in the following list that are t	ypically stored in the file descriptor: ((12
		file name	access permission	file owner	

read/write position in file

file size

pointer to blocks on disk

Name:			

b. Where are the inodes stored in UNIX? Be specific. (Hint: memory, disk) (8 points)

c. How does a UNIX inode point to the disk blocks where the corresponding file is stored? Don't worry about specific numbers, but describe enough of the concept to convince me that you understand it.. (10 points)

- 5. Suppose a given disk has 200 tracks, numbered 0 to 199. The head has just finished accessing track 125, and is now accessing track 143. The queue of requests, in FIFO order is as follows (86 appeared first): 86, 147, 91, 177, 94, 150, 102, 175, 130.
 - a. List *all* the head movements needed to satisfy the requests, using *FCFS* disk head scheduling. (5 points)
 - b. List *all* the head movements needed to satisfy the requests, using *SSTF* disk head scheduling. (5 points)
 - c. List *all* the head movements needed to satisfy the requests, using *LOOK* disk head scheduling. (5 points)

- 6. TCP is a popular protocol used on the internet at the transport layer.
 - a. What are the responsibilities of the transport layer / TCP? (10 points)

b. How can TCP be said to be "reliable"? (5 points)

7. Define and distinguish between these three concepts: SIMD, MIMD, distributed system. (15 points)

Name:	
- 1002220	

- 8. Sun's NFS supports mounting of remote file systems by client machines.
 - a. Draw and explain a diagram illustrating this. (15 points)

b. What information must the client OS maintain? (5 points)