
1

CS 4/53201 Homework #3 Operating Systems

Due in class on Friday 1 December 2000

1. (Exercise 8.9 from OSC) Why is it that, on a system with paging, a process cannot
access memory it does not own? How could the operating system allow access to other
memory? Why should it or should it not?

A process can only access memory using the page table that corresponds to that process, and
since frames corresponding to memory that it does not own would not be in its page table, it can
not access those frames.

The OS could allow such access — allowing the process to share data with another process —
but duplicating pages to be shared in both processes’ page tables. However, this isn’t very
“clean” in that it allows sharing of a particular page rather than sharing of a particular data
structure — which can be hard to determine and which also allows sharing of data structures for
which sharing might not be desired. In general, this probably is not a good idea.

2. (Exercise 9.20 from OSC) What is the cause of thrashing? How does the system detect
thrashing? Once it detects thrashing, what can the system do to eliminate this
problem?

Thrashing is cased when the sum of all the active processes’ working sets is greater than the
physical memory, meaning that almost every memory access causes a page fault. It can be
detected by watching for an abnormally high frequency of page faults or low CPU utilization,
and eliminated by reducing the degree of multiprogramming (the number of processes that can
run at one time), and perhaps by using local page replacement (only replacing pages in use by
itself).

3. (Exercise 10.8 from OSC) Some systems automatically open a file when it is reference
for the first time, and close the file when the job terminates. Discuss the advantages
and disadvantages of this scheme as compared to the more traditional one, where the
user has to open and close the file explicitly.

Opening and closing automatically has the advantage of making the programmer’s job slightly
easier. However, two disadvantages are that it requires the OS to check at each file reference to
see if the file has been opened yet or not, and requires a directory lookup rather than the use of
a file identifier (which would be used in a system with explicit open / close operations). Also,
this scheme leaves the file open longer than necessary, which could be a problem if there is a
per-process limit on the number of open files.

4. (Exercise 11.5 from OSC) Consider a system that supports the strategies of
contiguous, linked, and indexed allocation. What criteria should be used in deciding
which strategy is best utilized for a particular file?

Many possible answers here — the choice of strategy should depend on the type of access
(sequential or random), fragmentation, size of the file, whether the file might grow or not, ease
of free-space management, etc. The answer should expand on a few of these, and how the 3
strategies apply.

2

5. (Exercise 13.1 from OSC) None of the disk-scheduling disciplines, except FCFS, are
truly fair (starvation may occur).

a. Explain why this assertion is true.

All of the algorithms except FCFS use shortest seek distance to determine which request to
service next, and do not in any way consider how long a request has been waiting.

b. Describe a way to modify algorithms such as SCAN to ensure fairness.

Use length of waiting time in some way to increase the priority of older requests.

c. Explain why fairness is an important goal in time-sharing systems.

Fairness is important to give reasonable and predictable response time in honoring user’s
requests.

d. Give three or more examples of circumstances in which it is important that the
operating system be unfair in serving I/O requests.

It may be desirable to give priority to demand paging over application I/O.

Disk cache writebacks may need higher priority.

When saving data in the event of a crash, writes may need to be given priority over reads.

Other answers also possible.

