Process Management

- OS manages many kinds of activities:
 - User programs
 - System programs: printer spoolers, name servers, file servers, etc.
- Each is encapsulated in a process
 - A process includes the complete execution context (code, data, PC, registers, OS resources in use, etc.)
 - A process is <u>not</u> a program
 - A process is <u>one</u> instance of a program <u>in</u> <u>execution</u>; many processes can be running the same program
- OS must:
 - Create, delete, suspend, resume, and schedule processes
 - Support inter-process communication and synchronization, handle deadlock

File System Management

- File System
 - Disks (secondary storage) provide longterm storage, but are awkward to use directly
 - File system provides files and various operations on files
 - A *file* is a long-term storage entity, a named collection of persistent information that can be read or written
 - A file system supports directories, which contain files and other directories
 - Name, size, date created, date last modified, owner, etc.
- OS must:
 - Create and delete files and directories
 - Manipulate files and directories
 - Read, write, extend, rename, copy, protect
 - Provide general higher-level services
 - Backups, accounting, quotas

Fall 1998, Lecture 04

Fall 1998, Lecture 04

Memory Management

- Primary (Main) Memory
 - Provides direct access storage for CPU
 - Processes must be in main memory to execute
- OS must:
 - Mechanics
 - Keep track of memory in use
 - Keep track of unused ("free") memory
 - Protect memory space
 - Allocate, deallocate space for processes
 - Swap processes: memory <-> disk
 - Policies
 - Decide when to load each process into memory
 - Decide how much memory space to allocate each process
 - Decide when a process should be removed from memory

Fall 1998, Lecture 04

Disk Management

Disk

2

- The actual hardware that sits underneath the file system
- Large enough to store all user programs and data, application programs, entire OS
- Persistent endures system failures
- OS must:
 - Manage disk space at low level:
 - Keep track of used spaces
 - Keep track of unused (free) space
 - Keep track of "bad blocks"
 - Handle low-level disk functions, such as:
 - Scheduling of disk operations
 - Head movement
 - Note fine line between disk management and file system management

Another OS Structure: Large Kernel

- The kernel is the protected part of the OS that runs in kernel mode
 - Critical OS data structures and device registers are protected from user programs
 - Can use privileged instructions

Coping with Hugeness

Fall 1998, Lecture 04

