
1 Fall 2000, Lecture 05

Process

n A process (sometimes called a task, or a
job) is, informally, a program in execution

n “Process” is not the same as “program”

● We distinguish between a passive
program stored on disk, and an actively
executing process
n Multiple people can run the same

program; each running copy corresponds
to a distinct process

● The program is only part of a process; the
process also contains the execution state

n List processes (HP UNIX):

● ps — my processes, little detail

● ps -fl — my processes, more detail

● ps -efl — all processes, more detail

n Note user processes and OS processes
2 Fall 2000, Lecture 05

Process Creation / Termination

n Reasons for process creation

● User logs on

● User starts a program

● OS creates process to provide a service
(e.g., printer daemon to manage printer)

● Program starts another process (e.g.,
netscape calls xv to display a picture)

n Reasons for process termination

● Normal completion

● Arithmetic error, or data misuse (e.g.,
wrong type)

● Invalid instruction execution

● Insufficient memory available, or memory
bounds violation

● Resource protection error

● I/O failure

3 Fall 2000, Lecture 05

Process Execution

n Conceptual model of 4 processes
executing:

n Actual interleaved execution of the 4
processes:

process
A

process
B

process
C

process
D

time(one Program Counter per process)

process A
process B
process C
process A
process B
process C
process A
process C
process A
process D
process C
process D
process C

time(one Program Counter)

4 Fall 2000, Lecture 05

A Two-State Process Model

n This process model says that either a
process is running, or it is not running

n State transition diagram:

n Queuing diagram:

n CPU scheduling (round-robin)

● Queue is first-in, first-out (FIFO) list

● CPU scheduler takes process at head of
queue, runs it on CPU for one time slice,
then puts it back at tail of queue

not
running runningenter

dispatch

pause

exit

CPUenter dispatch

pause

exit
queue



5 Fall 2000, Lecture 05

Process Transitions in
the Two-State Process Model

n When the OS creates a new process, it is
initially placed in the not-running state

● It’s waiting for an opportunity to execute

n At the end of each time slice, the CPU
scheduler selects a new process to run

● The previously running process is paused
— moved from the running state into the
not-running state (at tail of queue)

● The new process (at head of queue) is
dispatched — moved from the not-
running state into the running state
n If the running process completes its

execution, it exits, and the CPU scheduler
is invoked again

n If it doesn’t complete, but its time is up, it
gets moved into the not-running state
anyway, and the CPU scheduler chooses
a new process to execute

6 Fall 2000, Lecture 05

Waiting on Something to Happen…

n Some reasons why a process that might
otherwise be running needs to wait:

● Wait for user to type the next key

● Wait for output to appear on the screen

● Program tried to read a file — wait while
OS decides which disk blocks to read,
and then actually reads the requested
information into memory

● Netscape tries to follow a link (URL) —
wait while OS determines address,
requests data, reads packets, displays
requested web page

n OS must distinguish between:

● Processes that are ready to run and are
waiting their turn for another time slice

● Processes that are waiting for something
to happen (OS operation, hardware
event, etc.)

7 Fall 2000, Lecture 05

A Five-State Process Model

n The not-running state in the two-state
model has now been split into a ready
state and a blocked state

● Running — currently being executed

● Ready — prepared to execute

● Blocked — waiting for some event to
occur (for an I/O operation to complete, or
a resource to become available, etc.)

● New — just been created

● Exit — just been terminated

n State transition diagram:

ready runningadmit dispatch

timeout

releasenew exit

blocked

event
wait

event
occurs

8 Fall 2000, Lecture 05

State Transitions in Five-State
Process Model

n new → ready

● Admitted to ready queue; can now be
considered by CPU scheduler

n ready → running

● CPU scheduler chooses that process to
execute next, according to some
scheduling algorithm

n running → ready

● Process has used up its current time slice

n running → blocked

● Process is waiting for some event to
occur (for I/O operation to complete, etc.)

n blocked → ready

● Whatever event the process was waiting
on has occurred



9 Fall 2000, Lecture 05

Process State

n The process state consists of (at least):

● Code for the program

● Program’s static and dynamic data

● Program’s procedure call stack

● Contents of general purpose registers

● Contents of Program Counter (PC)
—address of next instruction to be
executed

● Contents of Stack Pointer (SP)

● Contents of Program Status Word (PSW)
— interrupt status, condition codes, etc.

● OS resources in use (e.g., memory, open
files, connections to other programs)

● Accounting information

åEverything necessary to resume the
process’ execution if it is somehow put
aside temporarily

10 Fall 2000, Lecture 05

Process Control Block (PCB)

n For every process, the OS maintains a
Process Control Block (PCB), a data
structure that represents the process and
its state:

● Process id number

● Userid of owner

● Memory space (static, dynamic)

● Program Counter, Stack Pointer, general
purpose registers

● Process state (running, not-running, etc.)

● CPU scheduling information (e.g., priority)

● List of open files

● I/O states, I/O in progress

● Pointers into CPU scheduler’s state
queues (e.g., the waiting queue)

● …


