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Process

n A process (sometimes called a task, or a
job) is, informally, a program in execution

n “Process” is not the same as “program”

● We distinguish between a passive
program stored on disk, and an actively
executing process
n Multiple people can run the same

program; each running copy corresponds
to a distinct process

● The program is only part of a process; the
process also contains the execution state

n List processes (HP UNIX):

● ps — my processes, little detail

● ps -fl — my processes, more detail

● ps -efl — all processes, more detail

n Note user processes and OS processes
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Process Creation / Termination

n Reasons for process creation

● User logs on

● User starts a program

● OS creates process to provide a service
(e.g., printer daemon to manage printer)

● Program starts another process (e.g.,
netscape calls xv to display a picture)

n Reasons for process termination

● Normal completion

● Arithmetic error, or data misuse (e.g.,
wrong type)

● Invalid instruction execution

● Insufficient memory available, or memory
bounds violation

● Resource protection error

● I/O failure
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Process Execution

n Conceptual model of 4 processes
executing:

n Actual interleaved execution of the 4
processes:
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A Two-State Process Model

n This process model says that either a
process is running, or it is not running

n State transition diagram:

n Queuing diagram:

n CPU scheduling (round-robin)

● Queue is first-in, first-out (FIFO) list

● CPU scheduler takes process at head of
queue, runs it on CPU for one time slice,
then puts it back at tail of queue
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Process Transitions in
the Two-State Process Model

n When the OS creates a new process, it is
initially placed in the not-running state

● It’s waiting for an opportunity to execute

n At the end of each time slice, the CPU
scheduler selects a new process to run

● The previously running process is paused
— moved from the running state into the
not-running state (at tail of queue)

● The new process (at head of queue) is
dispatched — moved from the not-
running state into the running state
n If the running process completes its

execution, it exits, and the CPU scheduler
is invoked again

n If it doesn’t complete, but its time is up, it
gets moved into the not-running state
anyway, and the CPU scheduler chooses
a new process to execute
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Waiting on Something to Happen…

n Some reasons why a process that might
otherwise be running needs to wait:

● Wait for user to type the next key

● Wait for output to appear on the screen

● Program tried to read a file — wait while
OS decides which disk blocks to read,
and then actually reads the requested
information into memory

● Netscape tries to follow a link (URL) —
wait while OS determines address,
requests data, reads packets, displays
requested web page

n OS must distinguish between:

● Processes that are ready to run and are
waiting their turn for another time slice

● Processes that are waiting for something
to happen (OS operation, hardware
event, etc.)
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A Five-State Process Model

n The not-running state in the two-state
model has now been split into a ready
state and a blocked state

● Running — currently being executed

● Ready — prepared to execute

● Blocked — waiting for some event to
occur (for an I/O operation to complete, or
a resource to become available, etc.)

● New — just been created

● Exit — just been terminated

n State transition diagram:
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State Transitions in Five-State
Process Model

n new → ready

● Admitted to ready queue; can now be
considered by CPU scheduler

n ready → running

● CPU scheduler chooses that process to
execute next, according to some
scheduling algorithm

n running → ready

● Process has used up its current time slice

n running → blocked

● Process is waiting for some event to
occur (for I/O operation to complete, etc.)

n blocked → ready

● Whatever event the process was waiting
on has occurred
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Process State

n The process state consists of (at least):

● Code for the program

● Program’s static and dynamic data

● Program’s procedure call stack

● Contents of general purpose registers

● Contents of Program Counter (PC)
—address of next instruction to be
executed

● Contents of Stack Pointer (SP)

● Contents of Program Status Word (PSW)
— interrupt status, condition codes, etc.

● OS resources in use (e.g., memory, open
files, connections to other programs)

● Accounting information

åEverything necessary to resume the
process’ execution if it is somehow put
aside temporarily
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Process Control Block (PCB)

n For every process, the OS maintains a
Process Control Block (PCB), a data
structure that represents the process and
its state:

● Process id number

● Userid of owner

● Memory space (static, dynamic)

● Program Counter, Stack Pointer, general
purpose registers

● Process state (running, not-running, etc.)

● CPU scheduling information (e.g., priority)

● List of open files

● I/O states, I/O in progress

● Pointers into CPU scheduler’s state
queues (e.g., the waiting queue)

● …


