
1 Fall 2000, Lecture 06

A Five-State Process Model
(Review)

n The not-running state in the two-state
model has now been split into a ready
state and a blocked state

● Running — currently being executed

● Ready — prepared to execute

● Blocked — waiting for some event to
occur (for an I/O operation to complete, or
a resource to become available, etc.)

● New — just been created

● Exit — just been terminated

n State transition diagram:

ready runningadmit dispatch

timeout

releasenew exit

blocked

event
wait

event
occurs

2 Fall 2000, Lecture 06

UNIX Process Model

Figure from Operating Systems, 2nd edition, Stallings, Prentice Hall, 1995

Original diagram from The Design of the UNIX Operating System, M.
Bach, Prentice Hall, 1986

3 Fall 2000, Lecture 06

UNIX Process Model
(cont.)

n Start in Created, go to either:

● Ready to Run, in Memory

● or Ready to Run, Swapped (Out) if there
isn’t room in memory for the new process

● Ready to Run, in Memory is basically
same state as Preempted (dotted line)
n Preempted means process was returning

to user mode, but the kernel switched to
another process instead

n When scheduled, go to either:

● User Running (if in user mode)

● or Kernel Running (if in kernel mode)

● Go from U.R. to K.R. via system call

n Go to Asleep in Memory when waiting
for some event, to RtRiM when it occurs

n Go to Sleep, Swapped if swapped out
4 Fall 2000, Lecture 06

Process Creation in UNIX

n One process can create another process,
perhaps to do some work for it

● The original process is called the parent

● The new process is called the child

● The child is an (almost) identical copy of
parent (same code, same data, etc.)

● The parent can either wait for the child to
complete, or continue executing in
parallel (concurrently) with the child

n In UNIX, a process creates a child
process using the system call fork()

● In child process, fork() returns 0

● In parent process, fork() returns process
id of new child

n Child often uses exec() to start another
completely different program

5 Fall 2000, Lecture 06

Example of UNIX Process Creation

#include <sys/types.h>
#include <stdio.h>

int a = 6; /* global (external) variable */

int main(void)
{
 int b; /* local variable */
 pid_t pid; /* process id */

 b = 88;
 printf("..before fork\n");

 pid = fork();
 if (pid == 0) { /* child */
 a++; b++;
 } else /* parent */
 wait(pid);

 printf("..after fork, a = %d, b = %d\n", a, b);
 exit(0);
}

aegis> fork
..before fork
..after fork, a = 7, b = 89
..after fork, a = 6, b = 88

6 Fall 2000, Lecture 06

Context Switching

n Stopping one process and starting
another is called a context switch

● When the OS stops a process, it stores
the hardware registers (PC, SP, etc.) and
any other state information in that
process’ PCB

● When OS is ready to execute a waiting
process, it loads the hardware registers
(PC, SP, etc.) with the values stored in
the new process’ PCB, and restores any
other state information

● Performing a context switch is a relatively
expensive operation
n However, time-sharing systems may do

100–1000 context switches a second

n Why so often?

n Why not more often?

7 Fall 2000, Lecture 06

Schedulers

n Medium-term scheduler (demand paging)

● On time-sharing systems, does some of
what long-term scheduler used to do

● May swap processes out of memory
temporarily

● May suspend and resume processes

● Goal: balance load for better throughput

n Short-term scheduler (CPU scheduler)

● Executes frequently, about one hundred
times per second (every 10ms)

● Runs whenever:
n Process is created or terminated

n Process switches from running to blocked
n Interrupt occurs

● Selects process from those that are ready
to execute, allocates CPU to that process

8 Fall 2000, Lecture 06

Ready Queue and
Various I/O Device Queues

From Operating System Concepts, Silberschatz & Galvin., Addison-Wesley, 1994

n OS organizes all waiting processes (their
PCBs, actually) into a number of queues

● Queue for ready processes

● Queue for processes waiting on each
device (e.g., mouse) or type of event
(e.g., message)

