A Five-State Process Model
(Review)

m The not-running state in the two-state
model has now been split into a ready
state and a blocked state

e Running — currently being executed
e Ready — prepared to execute

e Blocked — waiting for some event to
occur (for an 1/O operation to complete, or
a resource to become available, etc.)

e New — just been created

e Exit— just been terminated

m State transition diagram:

blocked

Fall 2000, Lecture 06

UNIX Process Model

User Running

interrupt, sys call,

i t return interrupt
interrupt re P return

to user

preempt

reschedule
process

...,..-""'.Preempted

"".Ready to Run
In Memory

enough memory

Created

not enough memory
(swapping system only)

wakeup
Ready to Run,
Swapped

Sleep, Swapped

FIGURE 3.16 UNIX process state transition diagram [BACH86]

Figure from Operating Systems, 2nd edition, Stallings, Prentice Hall, 1995

Original diagram from The Design of the UNIX Operating System, M.
Bach, Prentice Hall, 1986

2 Fall 2000, Lecture 06

3

UNIX Process Model
(cont.)

m Start in Created, go to either:
e Ready to Run, in Memory

e or Ready to Run, Swapped (Out) if there
Isn’t room in memory for the new process

e Ready to Run, in Memory is basically
same state as Preempted (dotted line)

m Preempted means process was returning
to user mode, but the kernel switched to
another process instead

m When scheduled, go to either:
e User Running (if in user mode)

e or Kernel Running (if in kernel mode)

e Go from U.R. to K.R. via system call

m Go to Asleep in Memory when waiting
for some event, to RtRiM when it occurs

m Go to Sleep, Swapped if swapped out

Fall 2000, Lecture 06

Process Creation in UNIX

m One process can create another process,
perhaps to do some work for it

e The original process is called the parent
e The new process is called the child

e The child is an (almost) identical copy of
parent (same code, same data, etc.)

e The parent can either wait for the child to
complete, or continue executing in
parallel (concurrently) with the child

m In UNIX, a process creates a child
process using the system call fork()

¢ In child process, fork() returns 0
e In parent process, fork() returns process
id of new child

m Child often uses exec() to start another
completely different program

4 Fall 2000, Lecture 06

5

Example of UNIX Process Creation

#include <sys/types.h>
#include <stdio.h>
inta = 6; /* global (external) variable */

int main(void)

{
int b; /* local variable */
pid_t pid; * process id */
b =88;
printf("..before fork\n");
pid = fork();
if (pid==0){ /*child */
a++; b++;
} else [* parent */
wait(pid);
printf("..after fork, a = %d, b = %d\n", a, b);
exit(0);
}
aegis> fork

..before fork
..after fork,a=7,b =89
..after fork, a=6, b =88

Fall 2000, Lecture 06

Context Switching

m Stopping one process and starting
another is called a context switch

e When the OS stops a process, it stores
the hardware registers (PC, SP, etc.) and
any other state information in that
process’ PCB

e When OS is ready to execute a waiting
process, it loads the hardware registers
(PC, SP, etc.) with the values stored in
the new process’ PCB, and restores any
other state information

e Performing a context switch is a relatively
expensive operation

m However, time-sharing systems may do
100-1000 context switches a second

m Why so often?
m Why not more often?

Fall 2000, Lecture 06

Schedulers

m Medium-term scheduler (demand paging)

¢ On time-sharing systems, does some of
what long-term scheduler used to do

e May swap processes out of memory
temporarily

e May suspend and resume processes

e Goal: balance load for better throughput

m Short-term scheduler (CPU scheduler)

¢ Executes frequently, about one hundred
times per second (every 10ms)

e Runs whenever:
m Process is created or terminated
m Process switches from running to blocked
m Interrupt occurs

e Selects process from those that are ready
to execute, allocates CPU to that process

Fall 2000, Lecture 06

Ready Queue and
Various I/O Device Queues

queue header PCB, PCB,
ready head —
queue tail Jd registers registers

tape =
unit 0 =

ey [head 1—
it 1 1ail __l__ PCB, PCB,, PCBg
/ il i
ok [T eaa_ 3
unit 0 tail

terminal | " hisad -
unit 0

From Operating System Concepts, Silberschatz & Galvin., Addison-Wesley, 1994

m OS organizes all waiting processes (their
PCBs, actually) into a number of queues

e Queue for ready processes

¢ Queue for processes waiting on each
device (e.g., mouse) or type of event
(e.g., message)

Fall 2000, Lecture 06

