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A Five-State Process Model
(Review)

n The not-running state in the two-state
model has now been split into a ready
state and a blocked state

● Running — currently being executed

● Ready — prepared to execute

● Blocked — waiting for some event to
occur (for an I/O operation to complete, or
a resource to become available, etc.)

● New — just been created

● Exit — just been terminated

n State transition diagram:
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UNIX Process Model

Figure from Operating Systems, 2nd edition, Stallings, Prentice Hall, 1995

Original diagram from The Design of the UNIX Operating System, M.
Bach, Prentice Hall, 1986
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UNIX Process Model
(cont.)

n Start in Created, go to either:

● Ready to Run, in Memory

● or Ready to Run, Swapped (Out) if there
isn’t room in memory for the new process

● Ready to Run, in Memory is basically
same state as Preempted (dotted line)
n Preempted means process was returning

to user mode, but the kernel switched to
another process instead

n When scheduled, go to either:

● User Running (if in user mode)

● or Kernel Running (if in kernel mode)

● Go from U.R. to K.R. via system call

n Go to Asleep in Memory when waiting
for some event, to RtRiM when it occurs

n Go to Sleep, Swapped if swapped out
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Process Creation in UNIX

n One process can create another process,
perhaps to do some work for it

● The original process is called the parent

● The new process is called the child

● The child is an (almost) identical copy of
parent (same code, same data, etc.)

● The parent can either wait for the child to
complete, or continue executing in
parallel (concurrently) with the child

n In UNIX, a process creates a child
process using the system call fork( )

● In child process, fork( ) returns 0

● In parent process, fork( ) returns process
id of new child

n Child often uses exec( ) to start another
completely different program
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Example of UNIX Process Creation

#include <sys/types.h>
#include <stdio.h>

int a = 6; /* global (external) variable */

int main(void)
{
   int b; /* local variable */
   pid_t pid; /* process id */

   b = 88;
   printf("..before fork\n");

   pid = fork();
   if (pid == 0) { /* child */
      a++;  b++;
   } else /* parent */
      wait(pid);

   printf("..after fork, a = %d, b = %d\n", a, b);
   exit(0);
}

aegis> fork
..before fork
..after fork, a = 7, b = 89
..after fork, a = 6, b = 88
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Context Switching

n Stopping one process and starting
another is called a context switch

● When the OS stops a process, it stores
the hardware registers (PC, SP, etc.) and
any other state information in that
process’ PCB

● When OS is ready to execute a waiting
process, it loads the hardware registers
(PC, SP, etc.) with the values stored in
the new process’ PCB, and restores any
other state information

● Performing a context switch is a relatively
expensive operation
n However, time-sharing systems may do

100–1000 context switches a second

n Why so often?

n Why not more often?
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Schedulers

n Medium-term scheduler (demand paging)

● On time-sharing systems, does some of
what long-term scheduler used to do

● May swap processes out of memory
temporarily

● May suspend and resume processes

● Goal: balance load for better throughput

n Short-term scheduler (CPU scheduler)

● Executes frequently, about one hundred
times per second (every 10ms)

● Runs whenever:
n Process is created or terminated

n Process switches from running to blocked
n Interrupt occurs

● Selects process from those that are ready
to execute, allocates CPU to that process
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Ready Queue and
Various I/O Device Queues

From Operating System Concepts, Silberschatz & Galvin., Addison-Wesley, 1994

n OS organizes all waiting processes (their
PCBs, actually) into a number of queues

● Queue for ready processes

● Queue for processes waiting on each
device (e.g., mouse) or type of event
(e.g., message)


