
1 Fall 2000, Lecture 07

The Producer-Consumer Problem

n One process is a producer of information;
another is a consumer of that information

n Processes communicate through a
bounded (fixed-size) circular buffer

var buffer: array[0..n-1] of items; /* circular array */
in = 0
out = 0

/* producer */ /* consumer */
repeat forever repeat forever

… while (in == out)
produce item nextp do nothing
… nextc = buffer[out]
while (in+1 mod n == out) out = out+1 mod n

do nothing …
buffer[in] = nextp consume item nextc
in = in+1 mod n …

end repeat end repeat

free free full full full free free

out in

0 1 2 3 4 5 6
n = 7

2 Fall 2000, Lecture 07

Message Passing using
Send & Receive

n Blocking send:

● send(destination-process, message)

● Sends a message to another process, then
blocks (i.e., gets suspended by OS) until
message is received

n Blocking receive:

● receive(source-process, message)

● Blocks until a message is received (may
be minutes, hours, …)

n Producer-Consumer problem:

/* producer */ /* consumer */
repeat forever repeat forever

… receive(producer,nextc)
produce item nextp …
… consume item nextc
send(consumer, nextp) …

end repeat end repeat

3 Fall 2000, Lecture 07

Direct vs. Indirect Communication

n Direct communication — explicitly name
the process you’re communicating with

n send(destination-process, message)

n receive(source-process, message)

● Variation: receiver may be able to use a
“wildcard” to receive from any source

● Receiver can not distinguish between
multiple “types” of messages from sender

n Indirect communication — communicate
using mailboxes (owned by receiver)

n send(mailbox, message)
n receive(mailbox, message)

● Variation: … “wildcard” to receive from
any source into that mailbox

● Receiver can distinguish between
multiple “types” of messages from sender

● Some systems use “tags” instead of
mailboxes

4 Fall 2000, Lecture 07

Buffering

n Link may be able to temporarily queue
some messages during communication

n Zero capacity: (queue of length 0)

● Blocking communication

● Sender must wait until receiver receives
the message — this synchronization to
exchange data is called a rendezvous

n Bounded capacity: (queue of length n)

● If receiver’s queue is not full, new
message is put on queue, and sender
can continue executing immediately

● If queue is full, sender must block until
space is available in the queue

n Unbounded capacity: (infinite queue)

● Non-blocking communication

● Sender can always continue

5 Fall 2000, Lecture 07

Client / Server Model using
Message Passing

n Client / server model

● Server = process (or collection of
processes) that provides a service
n Example: name service, file service

● Client — process that uses the service

● Request / reply protocol:
n Client sends request message to server,

asking it to perform some service

n Server performs service, sends reply
message containing results or error code

client

request

reply

server

request

reply

kernelkernel

network

6 Fall 2000, Lecture 07

Remote Procedure Call (RPC)

n RPC mechanism:

● Hides message-passing I/O from the
programmer

● Looks (almost) like a procedure call —
but client invokes a procedure on a server

n RPC invocation (high-level view):

● Calling process (client) is suspended

● Parameters of procedure are passed
across network to called process (server)

● Server executes procedure

● Return parameters are sent back across
network

● Calling process resumes

n Invented by Birrell & Nelson at Xerox
PARC, described in February 1984 ACM
Transactions on Computer Systems

7 Fall 2000, Lecture 07

Client / Server Model using
Remote Procedure Calls (RPCs)

n Each RPC invocation by a client process
calls a client stub, which builds a message
and sends it to a server stub

n The server stub uses the message to
generate a local procedure call to the server

n If the local procedure call returns a value, the
server stub builds a message and sends it to
the client stub, which receives it and returns
the result(s) to the client

client

call

return

server

call

return

kernelkernel

network

client
stub

pack
parameters

unpack
results

unpack
parameters

pack
results

server
stub

8 Fall 2000, Lecture 07

RPC Invocation (More Detailed)

1. Client procedure calls the client stub

2. Client stub packs parameters into
message and traps to the kernel

3. Kernel sends message to remote kernel

4. Remote kernel gives message to server
stub

5. Server stub unpacks parameters and
calls server

6. Server executes procedure and returns
results to server stub

7. Server stub packs result(s) in message
and traps to kernel

8. Remote kernel sends message to local
kernel

9. Local kernel gives message to client stub

10. Client stub unpacks result(s) and
returns them to client

