
1 Fall 2000, Lecture 09

Nachos

n Nachos is an instructional operating
system developed at UC Berkeley

n Nachos consists of two main parts:

● Operating system
n This is the part of the code that you will

study and modify

n This code is in the threads, userprog,
and filesys directories

n We will not study the networking code in
the network directory

● Machine emulator — simulates a (slightly
old) MIPS CPU, registers, memory, timer
(clock), console, disk drive, and network
n You will study this code, but will not be

allowed to modify it
n This code is in the machine directory

n The OS and machine emulator run
together as a single UNIX process

2 Fall 2000, Lecture 09

Preparing for the First Project

n Reading assignment:

● Read about Nachos, & skim the material
on the emulated machine and threads
n Don’t worry about synchronization, user

programs, or the file system

● Read old Appendix A of the text (online
as “Overview Paper”)

● Skim Section 2 “Nachos Machine” and
Section 3 “Nachos Threads” in Narten’s
“A Road Map Through Nachos” (online)

● Skim material on threads in Kalra’s “Salsa
— An OS Tutorial” (online)

● Start looking at the code in the threads
and machine directories

● Road Map plus printouts of all code are
available in the MCS office for $4.50

n If you are not familiar with C++ or the gdb
debugger, see the class web page

3 Fall 2000, Lecture 09

Preparing for the First Project
(cont.)

n Compiling the code

● Nachos source code is available in
~walker/pub

● Read ~walker/pub/README

● Decide where you want to work, so you
can copy files from the appropriate
directory into your account
n ~walker/pub/nachos-3.4-hp

– For HP workstations (aegis, intrepid)

– Recommended

n ~walker/pub/nachos-3.4-sparc
– For Sun workstations (nimitz)

n ~walker/pub/nachos-3.4-orig
– The original, unmodified version

● Read “Project 1 — Getting an Early Start”
on the class web page to find out how to
copy the necessary files to your account,
and compile an executable copy of
Nachos into the threads directory

4 Fall 2000, Lecture 09

Nachos — The Emulated Machine

n Code is in the machine directory

n machine.h, machine.cc — emulates the
part of the machine that executes user
programs: main memory, processor
registers, etc.

n mipssim.cc — emulates the integer
instruction set of a MIPS R2/3000 CPU.

n interrupt.h, interrupt.cc — manages
enabling and disabling interrupts as part
of the machine emulation.

n timer.h, timer.cc — emulates a clock
that periodically causes an interrupt to
occur.

n stats.h — collects interesting statistics.

5 Fall 2000, Lecture 09

Nachos — The Operating System

n For now, we will mostly be concerned with
code in the threads directory

n main.cc, threadtest.cc — a simple test of
the thread routines.

n system.h, system.cc — Nachos
startup/shutdown routines.

n thread.h, thread.cc — thread data
structures and thread operations such as
thread fork, thread sleep and thread finish.

n scheduler.h, scheduler.cc — manages
the list of threads that are ready to run.

n list.h, list.cc — generic list management.

n utility.h, utility.cc — some useful
definitions and debugging routines.

6 Fall 2000, Lecture 09

Nachos Threads

n As distributed, Nachos does not support
multiple processes, only threads

● All threads share / execute the same
code (the Nachos source code)

● All threads share the same global
variables (have to worry about synch.)

n Threads can be in one of 4 states:

● JUST_CREATED — exists, has not
stack, not ready yet

● READY — on the ready list, ready to run

● RUNNING — currently running (variable
currentThread points to currently running
thread)

● BLOCKED — waiting on some external
even, probably should be on some event
waiting queue

7 Fall 2000, Lecture 09

Scheduling in Nachos

n The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

● Current thread calls Thread::Sleep() (to
block (wait) on some event)

● Current thread calls Thread::Yield() to
explicitly yield the CPU

n main() (in threads/main.cc)
calls Initialize() (in threads/system.cc)

● which starts scheduler, an instance of
class Scheduler (defined in
threads/scheduler.h and scheduler.cc)

n Interesting functions:

● Mechanics of running a thread:
n Scheduler::ReadyToRun() — puts a

thread at the tail of the ready queue
n Scheduler::FindNextToRun() — returns

thread at the head of the ready queue

n Scheduler::Run() — switches to thread
8 Fall 2000, Lecture 09

Scheduling in Nachos
(cont.)

Scheduler::Scheduler ()
{

 readyList = new List;
}

void
Scheduler::ReadyToRun (Thread *thread)
{

DEBUG('t',
"Putting thread %s on ready list.\n",
thread->getName());

thread->setStatus(READY);
readyList->Append((void *)thread);

}

Thread *
Scheduler::FindNextToRun ()
{

 return (Thread *)readyList->Remove();
}

9 Fall 2000, Lecture 09

Scheduling in Nachos
(cont.)

void
Scheduler::Run (Thread *nextThread)
{

Thread *oldThread = currentThread;

oldThread->CheckOverflow();
currentThread = nextThread;
currentThread->setStatus(RUNNING);

DEBUG('t', "Switching from thread \"%s\"
to thread \"%s\"\n",oldThread->getName(),

nextThread->getName());
SWITCH(oldThread, nextThread);
DEBUG('t', "Now in thread \"%s\"\n",

currentThread->getName());

if (threadToBeDestroyed != NULL) {
delete threadToBeDestroyed;
threadToBeDestroyed = NULL;

}
}

10 Fall 2000, Lecture 09

Working with a
Non-Preemptive Scheduler

n The Nachos scheduler is non-preemptive
FCFS — chooses next process when:

● Current thread calls Thread::Sleep() (to
block (wait) on some event)

● Current thread calls Thread::Yield() to
explicitly yield the CPU

n Some interesting functions:

● Thread::Fork() — create a new thread to
run a specified function with a single
argument, and put it on the ready queue

● Thread::Yield() — if there are other
threads waiting to run, suspend this
thread and run another

● Thread::Sleep() — this thread is waiting
on some event, so suspend it, and hope
someone else wakes it up later

● Thread::Finish() — terminate the
currently running thread

11 Fall 2000, Lecture 09

Manipulating Threads in Nachos

void
Thread::Fork(VoidFunctionPtr func, int arg)
{

DEBUG('t',"Forking thread \"%s\" with
func = 0x%x, arg = %d\n",
name, (int) func, arg);

StackAllocate(func, arg);

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

scheduler->ReadyToRun(this);
(void) interrupt->SetLevel(oldLevel);

}

