
1 Fall 2000, Lecture 10

The Producer-Consumer Problem
(Review from Lecture 07)

n One thread is a producer of information;
another is a consumer of that information

● They share a bounded circular buffer

● Processes — OS must support shared
memory between processes

● Threads — all memory is shared

var buffer: array[0..n-1] of items; /* circular array */
in = 0
out = 0

/* producer */ /* consumer */
repeat forever repeat forever

… while (in == out)
produce item nextp do nothing
… nextc = buffer[out]
while (in+1 mod n == out) out = out+1 mod n

do nothing …
buffer[in] = nextp consume item nextc
in = in+1 mod n …

end repeat end repeat

free free full full full free free

out in

0 1 2 3 4 5 6
n = 7

2 Fall 2000, Lecture 10

Too Much Milk!

Time You Your Roommate

3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery
3:15 Arrive home
3:20 Arrive at grocery Look in fridge, no milk
3:25 Buy milk, leave Leave for grocery
3:30
3:35 Arrive home Arrive at grocery
3:36 Put milk in fridge
3:40 Buy milk, leave
3:45
3:50 Arrive home
3:51 Put milk in fridge

3:51 Oh, no! Too much milk!!

n The problem here is that the lines:
“Look in fridge, no milk”

through
“Put milk in fridge”

are not an atomic operation

3 Fall 2000, Lecture 10

Another Example

Thread A Thread B

i = 0 i = 0
while (i < 10) while (i > –10)

i = i + 1 i = i – 1
print “A wins” print “B wins”

n Assumptions:

● Memory load and store are atomic

● Increment and decrement are not atomic

n Questions:

● Who wins?

● Is it guaranteed that someone wins?

● What if both threads have their own CPU,
running concurrently at exactly the same
speed? Is it guaranteed that it goes on
forever?

● What if they are sharing a CPU?

4 Fall 2000, Lecture 10

Synchronization Terminology

n Synchronization — using atomic
(indivisible) operations to ensure
cooperation between threads

n Mutual exclusion — ensures that only
one thread does a particular activity at a
time — all other threads are excluded
from doing that activity

n Critical section (region) — code that only
one thread can execute at a time (e.g.,
code that modifies shared data)

n Lock — mechanism that prevents
another thread from doing something:

● Lock before entering a critical section

● Unlock when leaving a critical section

● Thread wanting to enter a locked critical
section must wait until it’s unlocked

5 Fall 2000, Lecture 10

Enforcing Mutual Exclusion

n Methods to enforce mutual exclusion

● Up to user — threads have to explicitly
coordinate with each other

● Up to OS — OS provides support for
mutual exclusion

● Up to hardware — hardware provides
architectural support for mutual exclusion

n Solution must:

● Avoid starvation — if a thread starts trying
to gain access to the critical section, then
it should eventually succeed

● Avoid deadlock — if some threads are
trying to enter their critical sections, then
one of them must eventually succeed

n We will assume that a thread may halt in
its non-critical-section, but not in its
critical section

6 Fall 2000, Lecture 10

Algorithm 1

n Informal description:

● Igloo with blackboard inside
n Only one person (thread) can fit in the

igloo at a time

n In the igloo is a blackboard, which is large
enough to hold only one value

● A thread that wants to execute the critical
section enters the igloo, and examines
the blackboard
n If its number is not on the blackboard, it

leaves the igloo, goes outside, and runs
laps around the igloo

– After a while, it goes back inside, and
checks the blackboard again

– This “busy waiting” continues until
eventually its number is on the blackboard

n If its number is on the blackboard, it
leaves the igloo and goes on to the critical
section

n When it returns from the critical section, it
enters the igloo, and writes the other
thread’s number on the blackboard

7 Fall 2000, Lecture 10

Algorithm 1 (cont.)

n Code:

t1 () {
while (true) {

while (turn != 1)
; /* do nothing */

… critical section of code …
turn = 2;
… other non-critical code …

}
}

t2 () {
while (true) {

while (turn != 2)
; /* do nothing */

… critical section of code …
turn = 1;
… other non-critical code …

}
}

8 Fall 2000, Lecture 10

Algorithm 2a

n Informal description:

● Each thread has its own igloo
n A thread can examine and alter its own

blackboard

n A thread can examine, but not alter, the
other thread’s blackboard

n “true” on blackboard = that thread is in the
critical section

● A thread that wants to execute the critical
section enters the other thread’s igloo,
and examines the blackboard
n It looks for “false” on that blackboard,

indicating that the other thread is not in the
critical section

– When that happens, it goes back to its
own igloo, and writes “true” on its own
blackboard, and then goes on to the
critical section

n When it returns from the critical section, it
enters the igloo, and writes “false” on the
blackboard

9 Fall 2000, Lecture 10

Algorithm 2a (cont.)

n Code:

t1 () {
while (true) {

while (t2_in_crit == true)
; /* do nothing */

t1_in_crit = true;
… critical section of code …
t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

while (t1_in_crit == true)
; /* do nothing */

t2_in_crit = true;
… critical section of code …
t2_in_crit = false;
… other non-critical code …

}
}

10 Fall 2000, Lecture 10

Algorithm 2b

n Code:

t1 () {
while (true) {

t1_in_crit = true;
while (t2_in_crit == true)

; /* do nothing */
… critical section of code …
t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

t2_in_crit = true;
while (t1_in_crit == true)

; /* do nothing */
… critical section of code …
t2_in_crit = false;
… other non-critical code …

}
}

