
1 Fall 2000, Lecture 11

Algorithm 3

n Think of this algorithm as using a referee
who keeps track of whose “turn” it is

● Anytime the two disagree about whose
turn it is, they ask the referee, who keeps
track of whose turn it is to have priority

● This is called Peterson’s algorithm (1981)
n The original (but more complicated)

solution to this problem is Dekker’s
algorithm (1965)

n For n processes, we can use Lamport’s
Bakery algorithm (1974)

● When a thread tries to enter the critical
section, it get assigned a number higher
than anyone else’s number

● Thread with lowest number gets in

● If two threads get the same number, the
one with the lowest process id gets in

2 Fall 2000, Lecture 11

Algorithm 3 (cont.)

n Code:

t1 () {
while (true) {

t1_in_crit = true;
turn = 2;
while (t2_in_crit == true && turn != 1)

; /* do nothing */
… critical section of code …
 t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

similar…
}

}

3 Fall 2000, Lecture 11

Semaphores —
OS Support for Mutual Exclusion

n Semaphores were invented by Dijkstra in
1965, and can be thought of as a
generalized locking mechanism

● A semaphore supports two atomic
operations, P / wait and V / signal
n The semaphore initialized to 1
n Before entering the critical section,

a thread calls “P(semaphore)”,
or sometimes “wait(semaphore)”

n After leaving the critical section,
a thread calls “V(semaphore)”,
or sometimes “signal(semaphore)”

n Too much milk:

Thread A Thread B

milk–>P(); milk–>P();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk–>V(); milk–>V();

4 Fall 2000, Lecture 11

Details of Semaphore Operation

n Semaphore “s” is initially 1

n Before entering the critical section, a
thread calls “P(s)” or “wait(s)”

● wait (s):
n s = s – 1

n if (s < 0)
block the thread that called wait(s) on a

queue associated with semaphore s

n otherwise
let the thread that called wait(s) continue into

the critical section

n After leaving the critical section, a thread
calls “V(s)” or “signal(s)”

● signal (s):
n s = s + 1

n if (s ≤ 0), then

wake up one of the threads that called
wait(s), and run it so that it can continue
into the critical section

5 Fall 2000, Lecture 11

Semaphore Operation

n Informal description:

● Single igloo, containing a blackboard and
a very large freezer

● Wait — thread enters the igloo, checks
the blackboard, and decrements the
value shown there
n If new value is 0, thread goes on to the

critical section

n If new value is negative, thread crawls in
the freezer and hibernates (making room
for others to enter the igloo)

● Signal — thread enters igloo, checks
blackboard, and increments the value
there
n If new value is 0 or negative, there’s a

thread waiting in the freezer, so it thaws
out a frozen thread, which then goes on to
the critical section

6 Fall 2000, Lecture 11

Using Semaphores

n Code using semaphores:

t1 () {
while (true) {

wait (s);
… critical section of code …
signal (s);
… other non-critical code …

}
}

t2 () {
while (true) {

wait (s);
… critical section of code …
signal (s);
… other non-critical code …

}
}

7 Fall 2000, Lecture 11

Semaphore Operation & Values

n Semaphores (simplified slightly):

wait (s): signal (s):

s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up & run one of
that called wait(s) the waiting threads

otherwise
continue into CS

n Semaphore values:

● Positive semaphore = number of
(additional) threads that can be allowed
into the critical section

● Negative semaphore = number of threads
blocked (note — there’s also one in CS)

● Binary semaphore has an initial value of 1

● Counting semaphore has an initial value
greater than 1

8 Fall 2000, Lecture 11

Using Semaphores for
Mutual Exclusion

n Too much milk:

Thread A Thread B

milk–>P(); milk–>P();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk–>V(); milk–>V();

● “noMilk” is a semaphore initialized to 1

n Execution:

After: milk queue A B

1
A: noM->P(); 0 in CS
B: noM->P(); -1 B in CS waiting
A: noM->V(); 0 finish ready, in CS
B: noM->V(); 1 finish

9 Fall 2000, Lecture 11

The Coke Machine
(Bounded-Buffer Producer-Consumer)

/* number of full slots (Cokes) in machine */
semaphore fullSlot = 0;
/* number of empty slots in machine */
semaphore emptySlot = 100;
/* only one person accesses machine at a time */
semaphore mutex = 1;

DeliveryPerson()
{

emptySlot->P(); /* empty slot avail? */
mutex->P(); /* exclusive access */
put 1 Coke in machine
mutex->V();
fullSlot->V(); /* another full slot! */

}

ThirstyPerson()
{

fullSlot->P(); /* full slot (Coke)? */
mutex->P(); /* exclusive access */
get 1 Coke from machine
mutex->V();
emptySlot->V(); /* another empty slot! */

}

