
1 Fall 2000, Lecture 13

Semaphores — OS Support for
Mutual Exclusion (Review)

n Even with semaphores, some
synchronization errors can occur:

Honest Mistake Careless Mistake

milk–>V(); milk–>P();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk–>P(); milk–>P();

● Other variations possible

n Solution — new language constructs

● (Conditional) Critical region
n region v when B do S;
n Variable v is a shared variable that can

only be accessed inside the critical region

n Boolean expression B governs access

n Statement S (critical region) is executed
only if B is true; otherwise it blocks until B
does become true

● Monitor

2 Fall 2000, Lecture 13

From Semaphores to
Locks and Condition Variables

n A semaphore serves two purposes:

● Mutual exclusion — protect shared data
n mutex in Coke machine

n milk in Too Much Milk

n Always a binary semaphore

● Synchronization — temporally coordinate
events (one thread waits for something,
other thread signals when it’s available)
n fullSlot and emptySlot in Coke machine

n Either a binary or counting semaphore

n Idea — two separate constructs:

● Locks — provide mutually exclusion

● Condition variables — provide
synchronization

● Like semaphores, locks and condition
variables are language-independent, and
are available in many programming
environments

3 Fall 2000, Lecture 13

Locks

n Locks provide mutually exclusive access
to shared data:

● A lock can be “locked” or “unlocked”
(sometimes called “busy” and “free”)

n Operations on locks (Nachos syntax):

● Lock(*name) — create a new (initially
unlocked) Lock with the specified name

● Lock::Acquire() — wait (block) until the
lock is unlocked; then lock it

● Lock::Release() — unlock the lock; then
wake up (signal) any threads waiting on it
in Lock::Acquire()

n Can be implemented:

● Trivially by binary semaphores (create a
private lock semaphore, use P and V)

● By lower-level constructs, much like
semaphores are implemented

4 Fall 2000, Lecture 13

Locks (cont.)

n Conventions:

● Before accessing shared data, call
Lock::Acquire() on a specific lock
n Complain (via ASSERT) if a thread tries to

Acquire a lock it already has

● After accessing shared data, call Lock::
Release() on that same lock
n Complain if a thread besides the one that

Acquired a lock tries to Release it

n Example of using locks for mutual
exclusion (here, “milk” is a lock):

Thread A Thread B

milk–>Acquire(); milk–>Acquire();
if (noMilk) if (noMilk)

buy milk; buy milk;
milk–>Release(); milk–>Release();

● The test in threads/threadtest.cc should
work exactly the same if locks are used
instead of semaphores

5 Fall 2000, Lecture 13

Locks vs. Condition Variables

n Consider the following code:

Queue::Add() { Queue::Remove() {
lock->Acquire(); lock->Acquire();
add item if item on queue
lock->Release(); remove item

} lock->Release();
return item;

}

● Queue::Remove will only return an item if
there’s already one in the queue

n If the queue is empty, it might be more
desirable for Queue::Remove to wait until
there is something to remove

● Can’t just go to sleep — if it sleeps while
holding the lock, no other thread can
access the shared queue, add an item to
it, and wake up the sleeping thread

● Solution: condition variables will let a
thread sleep inside a critical section, by
releasing the lock while the thread sleeps

6 Fall 2000, Lecture 13

Condition Variables

n Condition variables coordinate events

n Operations on condition variables
(Nachos syntax):

● Condition(*name) — create a new
instance of class Condition (a condition
variable) with the specified name
n After creating a new condition, the

programmer must call Lock::Lock() to
create a lock that will be associated with
that condition variable

● Condition::Wait(conditionLock) — release
the lock and wait (sleep); when the thread
wakes up, immediately try to re-acquire
the lock; return when it has the lock

● Condition::Signal(conditionLock) — if
threads are waiting on the lock, wake up
one of those threads and put it on the
ready list; otherwise do nothing

7 Fall 2000, Lecture 13

Condition Variables (cont.)

n Operations (cont.):

● Condition::Broadcast(conditionLock) — if
threads are waiting on the lock, wake up
all of those threads and put them on the
ready list; otherwise do nothing

n Important: a thread must hold the lock
before calling Wait, Signal, or Broadcast

n Can be implemented:

● Carefully by higher-level constructs
(create and queue threads, sleep and
wake up threads as appropriate)

● Carefully by binary semaphores (create
and queue semaphores as appropriate,
use P and V to synchronize)
n Does this work? More on this in a few

minutes…

● Carefully by lower-level constructs, much
like semaphores are implemented

8 Fall 2000, Lecture 13

Using Locks and Condition Variables

n Associated with a data structure is both a
lock and a condition variable

● Before the program performs an operation
on the data structure, it acquires the lock

● If it needs to wait until another operation
puts the data structure into an appropriate
state, it uses the condition variable to wait

n Unbounded-buffer producer-consumer:

Lock *lk; int avail = 0;
Condition *c;

/* consumer */
/* producer */ while (1) {
while (1) { lk-> Acquire();

lk->Acquire(); if (avail==0)
produce next item c->Wait(lk);
avail++; consume next item
c->Signal(lk) avail--;
lk->Release(); lk->Release();

} }

