
1 Fall 2000, Lecture 16

CPU Scheduling

n The CPU scheduler (sometimes called
the dispatcher or short-term scheduler):

● Selects a process from the ready queue
and lets it run on the CPU
n Assumes all processes are in memory, and

one of those is executing on the CPU

● Crucial in multiprogramming environment
n Goal is to maximize CPU utilization

n Non-preemptive scheduling — scheduler
executes only when:

● Process is terminated

● Process switches from running to blocked

ready runningadmit dispatch

timeout

releasenew exit

blocked

event
wait

event
occurs

2 Fall 2000, Lecture 16

Process Execution Behavior

n Assumptions:

● One process per user

● One thread per process

● Processes are independent, and compete
for resources (including the CPU)

n Processes run in CPU - I/O burst cycle:

● Compute for a while (on CPU)

● Do some I/O

● Continue these two repeatedly

n Two types of processes:

● CPU-bound — does mostly computation
(long CPU burst), and very little I/O

● I/O-bound — does mostly I/O, and very
little computation (short CPU burst)

3 Fall 2000, Lecture 16

First-Come-First-Served (FCFS)

n Other names:

● First-In-First-Out (FIFO)

● Run-Until-Done

n Policy:

● Choose process from ready queue in the
order of its arrival, and run that process
non-preemptively
n Early FCFS schedulers were overly non-

preemptive: the process did not relinquish
the CPU until it was finished, even when it
was doing I/O

n Now, non-preemptive means the
scheduler chooses another process when
the first one terminates or blocks

n Implement using FIFO queue (add to tail,
take from head)

n Used in Nachos (as distributed)

4 Fall 2000, Lecture 16

FCFS Example

n Example 1:

n Example 2:

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

24 3 3

0 0 0

P1 P2 P3

0 24 27 30

average waiting time = (0 + 24 + 27) / 3 = 17

Process
(Arrival Order)

Burst Time

Arrival Time

P3 P2 P1

3 3 24

0 0 0

P1P3 P2

0 3 6 30

average waiting time = (0 + 3 + 6) / 3 = 3

5 Fall 2000, Lecture 16

Scheduling in Nachos
(Review)

n main() (in threads/main.cc)
calls Initialize() (in threads/system.cc)

● which starts scheduler, an instance of
class Scheduler (defined in
threads/scheduler.h, scheduler.cc)

n Interesting functions:

● Mechanics of running a thread:
n Scheduler::ReadyToRun() — puts a

thread at the tail of the ready queue

n Scheduler::FindNextToRun() — returns
thread at the head of the ready queue

n Scheduler::Run() — switches to thread

● Scheduler is non-preemptive FCFS —
chooses next process when:
n Current thread terminates
n Current thread calls Thread::Yield() to

explicitly yield the CPU

n Current thread calls Thread::Sleep() (to
block (wait) on some event)

6 Fall 2000, Lecture 16

Scheduling in Nachos
(Review)

Scheduler::Scheduler ()
{

 readyList = new List;
}

void
Scheduler::ReadyToRun (Thread *thread)
{

DEBUG('t',
"Putting thread %s on ready list.\n",
thread->getName());

thread->setStatus(READY);
readyList->Append((void *)thread);

}

Thread *
Scheduler::FindNextToRun ()
{

 return (Thread *)readyList->Remove();
}

7 Fall 2000, Lecture 16

Scheduling in Nachos
(Review)

void
Scheduler::Run (Thread *nextThread)
{

Thread *oldThread = currentThread;

oldThread->CheckOverflow();
currentThread = nextThread;
currentThread->setStatus(RUNNING);

DEBUG('t', "Switching from thread \"%s\"
to thread \"%s\"\n",oldThread->getName(),

nextThread->getName());
SWITCH(oldThread, nextThread);
DEBUG('t', "Now in thread \"%s\"\n",

currentThread->getName());

if (threadToBeDestroyed != NULL) {
delete threadToBeDestroyed;
threadToBeDestroyed = NULL;

}
}

8 Fall 2000, Lecture 16

Manipulating Threads in Nachos
(Review)

void
Thread::Fork(VoidFunctionPtr func, int arg)
{

DEBUG('t',"Forking thread \"%s\" with
func = 0x%x, arg = %d\n",
name, (int) func, arg);

StackAllocate(func, arg);

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

scheduler->ReadyToRun(this);
(void) interrupt->SetLevel(oldLevel);

}

9 Fall 2000, Lecture 16

Manipulating Threads in Nachos (cont.)

void
Thread::Yield ()
{

Thread *nextThread;

IntStatus oldLevel = interrupt->
SetLevel(IntOff);

ASSERT(this == currentThread);
DEBUG('t', "Yielding thread \"%s\"\n",

getName());

nextThread = scheduler->
FindNextToRun();

if (nextThread != NULL) {
scheduler->ReadyToRun(this);
scheduler->Run(nextThread);

}
(void) interrupt->SetLevel(oldLevel);

}

10 Fall 2000, Lecture 16

Manipulating Threads in Nachos (cont.)

void
Thread::Sleep ()
{

Thread *nextThread;

ASSERT(this == currentThread);
ASSERT(interrupt->getLevel() == IntOff);
DEBUG('t', "Sleeping thread \"%s\"\n",

getName());

status = BLOCKED;
while ((nextThread = scheduler->

FindNextToRun()) == NULL)
interrupt->Idle();

scheduler->Run(nextThread);
}

11 Fall 2000, Lecture 16

Semaphores in Nachos
(Review)

void
Semaphore::P()
{
 IntStatus oldLevel = interrupt->

SetLevel(IntOff); // disable interrupts

 while (value == 0) { // sema not avail
queue-> // so go to sleep

Append((void *)currentThread);
currentThread->Sleep();

 }

 value--; // semaphore available,
// consume its value

(void) interrupt-> // re-enable interrupts
SetLevel(oldLevel);

}

12 Fall 2000, Lecture 16

Semaphores in Nachos (cont.)
(Review)

void
Semaphore::V()
{
 Thread *thread;

 IntStatus oldLevel = interrupt->
SetLevel(IntOff);

 thread = (Thread *)queue->Remove();
 if (thread != NULL) // make thread ready,

// consuming the V immediately
scheduler->ReadyToRun(thread);

 value++;

 (void) interrupt->SetLevel(oldLevel);
}

