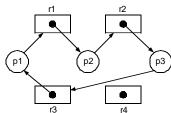

Dealing with Deadlock (Review)

- The Ostrich Approach stick your head in the sand and ignore the problem
- Deadlock prevention prevent deadlock from occurring by eliminating one of the 4 deadlock conditions
- Deadlock detection algorithms detect when deadlock has occurred
 - Deadlock recovery algorithms break the deadlock
- Deadlock avoidance algorithms consider resources currently available, resources allocated to each process, and possible future requests, and only fulfill requests that will not lead to deadlock


Fall 2000, Lecture 20

Interpreting a RAG With Single Resource Instances (Review)

■ If the graph does **not** contain a <u>cycle</u>, then **no** deadlock exists

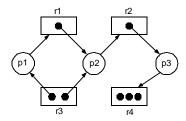
■ If the graph **does** contain a <u>cycle</u>, then a deadlock **does** exist

■ With <u>single</u> resource instances, a <u>cycle</u> is a <u>necessary</u> and <u>sufficient</u> condition for deadlock

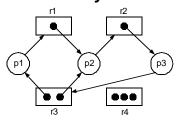
Resource-Allocation Graph (Review)

- The deadlock conditions can be modeled using a directed graph called a *resource-allocation graph* (RAG)
 - 2 kinds of nodes:
 - Boxes represent resources
 - Instances of the resource are represented as dots within the box
 - Circles represent processes
 - 2 kinds of (directed) edges:
 - Request edge from process to resource — indicates the process has requested the resource, and is waiting to acquire it
 - Assignment edge from resource instance to process indicates the process is holding the resource instance
 - When a request is made, a request edge is added
 - When request is fulfilled, the request edge is transformed into an assignment edge
 - When process releases the resource, the assignment edge is deleted

Fall 2000, Lecture 20

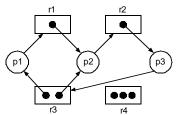

Deadlock Detection (Single Resource of Each Type)

- If all resources have only a single instance, deadlock can be detected by searching the resource-allocation graph for cycles
 - Silberschatz defines a simpler graph, called the wait-for graph, and searches that graph instead
 - The wait-for graph is the resourceallocation graph, minus the resources
 - An edge from p1 to p2 means p1 is waiting for a resource that p2 holds (here we don't care which resource is involved)
- One simple algorithm:
 - Start at each node, and do a depth-first search from there
 - If a search ever comes back to a node it's already found, then it has found a cycle

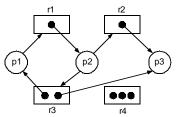

Fall 2000, Lecture 20 4 Fall 2000, Lecture 20

Interpreting a RAG With Multiple Resource Instances

■ If the graph does **not** contain a <u>cycle</u>, then **no** deadlock exists



■ If the graph **does** contain a <u>cycle</u>, then a deadlock **may** exist



With <u>multiple</u> resource instances, a <u>cycle</u> is a <u>necessary</u> (but not <u>sufficient</u>) condition for deadlock Interpreting a RAG With Multiple Resource Instances (cont.)

■ If the graph **does** contain a <u>knot</u> (and a cycle), then a deadlock **does** exist

■ If the graph **does not** contain a <u>knot</u>, then a deadlock **does not** exist

■ With <u>multiple</u> resource instances, a <u>knot</u> is a <u>sufficient</u> condition for deadlock

Fall 2000, Lecture 20

Deadlock Detection (Multiple Resources of Each Type)

■ This algorithm (Coffman, 1971) uses the following data structures:

Existing Resources (E1, E2, E3, ..., Em)

Available Resources (A1, A2, A3, ..., Am)

Current Allocation

Current Allocation									
	C11	C12	C13		C1m				
	C21	C22	C23		C2m				
	Cn1	Cn2	Cn3		Cnm				

Request

Ì	R11	R12	R13	 R1m
	D21	R22	Das	 D2m
	1\21	1122	1123	 1\Z111
	Rn1	Rn2	Rn3	 Rnm

- n processes, m types of resources
 - Existing Resources vector tells number of resources of each type that exist
 - Available Resources vector tells number of resources of each type that are available (unassigned to any process)
 - i-th row of Current Allocation matrix tells number of resources of each type allocated (assigned) to process i

Fall 2000, Lecture 20

Deadlock Detection (Multiple Resources of Each Type) (cont.)

- Every resource is either allocated or available
 - Number of resources of type j that have been allocated to all processes, plus number of resources of type j that are available, should equal number of resources of type j in existence
- Processes may have unfulfilled requests
 - i-th row of Request matrix tells number of resources of each type process i has requested, but not yet received
- Notation: comparing vectors
 - If A and B are vectors, the relation A ≤ B means that each element of A is less than or equal to the corresponding element of B (i.e., A ≤ B iff A_i ≤ B_i for 0 ≤ i ≤ m)
 - Furthermore, A < B iff $A \le B$ and $A \ne B$

Fall 2000, Lecture 20

Fall 2000, Lecture 20

Deadlock Detection Algorithm (Multiple Resources of Each Type)

Operation:

- Every process is initially unmarked
- As algorithm progresses, processes will be marked, which indicates they are able to complete, and thus are not deadlocked
- When algorithm terminates, any unmarked processes are deadlocked

■ Algorithm:

- Look for an unmarked process Pi for which the i-th row of the Request matrix is less than or equal to the Available vector
- If such a process is found, add the i-th row of the Current matrix to the Available vector, mark the process, and go back to step 1
- If no such process exists, the algorithm terminates

Fall 2000, Lecture 20

After Deadlock Detection: Deadlock Recovery

- How often does deadlock detection run?
 - After every resource request?
 - Less often (e.g., every hour or so, or whenever resource utilization gets low)?
- What if OS detects a deadlock?
 - Terminate a process

11

- All deadlocked processes
- One process at a time until no deadlock
 - Which one?
 - One with most resources?
 - One with less cost?
 - » CPU time used, needed in future
 - » Resources used, needed
 - That's a choice similar to CPU scheduling
- Is it acceptable to terminate process(es)?
 - May have performed a long computation
 - » Not ideal, but OK to terminate it
 - Maybe have updated a file or done I/O
 - » Can't just start it over again!

Deadlock Detection Example (Multiple Resources of Each Type)

Existing Resources (4 2 3 1) (2 1 0 0)

Current Allocation Request [2 0 0 1 0 2 0 0 1 0 2 1 0 0]

resources = (tape drive plotter printer CDROM)

- Whose request can be fulfilled?
 - ◆ Process 1 no no CDROM available
 - Process 2 no no printer available
 - Process 3 yes give it the requested resources, and after it completes and releases those resources, A = (2 2 2 0)
 - Process 1 still can't run (no CDROM), but process 2 can run, giving A = (4 2 2 1)
 - Process 1 can run, giving A = (4 2 3 1)

Fall 2000, Lecture 20

After Deadlock Detection: Deadlock Recovery (cont.)

- Any less drastic alternatives?
 - Preempt resources

10

- One at a time until no deadlock
- Which "victim"?
 - Again, based on cost, similar to CPU scheduling
- Is rollback possible?
 - Preempt resources take them away
 - Rollback "roll" the process back to some safe state, and restart it from there
 - » OS must checkpoint the process frequently write its state to a file
 - Could roll back to beginning, or just enough to break the deadlock
 - » This second time through, it has to wait for the resource
 - » Has to keep multiple checkpoint files, which adds a lot of overhead
- Avoid starvation
 - May happen if decision is based on same cost factors each time
 - Don't keep preempting same process (i.e., set some limit)

Fall 2000, Lecture 20 12 Fall 2000, Lecture 20