
1 Fall 2000, Lecture 21

Deadlock Avoidance — Motivation

n Example to motivate a D.A. algorithm:

● state p — neither process running

● state q — scheduler ran A

● state r — scheduler ran B

● state s — scheduler ran A, A requested
and received printer

● state t — schedule ran B

safesafe

safe

safe

safe

unsafe

un-
reachable

process
A

process
B

p q

r

s

t

I1 I2 I3 I4

I5

I6

I7

I8

printer

plotter

printer

plotter

(both
processes
finished)

u

2 Fall 2000, Lecture 21

Deadlock Avoidance — Motivation
(cont.)

n Look at shaded areas:

● The one shaded “\\\” represents both
processes using printer at same time —
this is not allowed by mutual exclusion

● Other (“///”) is similar, involving plotter

n Look at box marked “unsafe”

● If OS enters this box, it will eventually
deadlock because it will have to enter a
shaded (illegal mutual exclusion) region
n All paths must proceed up or right (why?)

● Box is unsafe — should not be entered!
n From state t, must avoid the unsafe area

by going to the right (up to I4) (blocking B)

n At state t, the OS must decide whether or
not to grant B’s request

● A good choice will avoid deadlock!

● Need to know resource needs in advance

3 Fall 2000, Lecture 21

Deadlock Avoidance —
Safe and Unsafe States

n State (a) is safe, meaning there exists a
sequence of allocations that allows all
processes to complete:

● B runs, asks for 2 more resources, 1 free
n B finishes, releases its resources, 5 free

● C runs, asks for 5 more resources, 0 free
n C finishes, releases its resources, 7 free

● A runs, gets 6 more, everyone done…

A 3 9

B 2 4

C 2 7

free: 3
(a)

Has Max

A 3 9

B 4 4

C 2 7

free: 1
(b)

Has Max

A 3 9

B 0 —

C 2 7

free: 5
(c)

Has Max

A 3 9

B 0 —

C 7 7

free: 0
(d)

Has Max

A 3 9

B 0 —

C 0 —

free: 7
(e)

Has Max

A 9 9

B 0 —

C 0 —

free: 1
(f)

Has Max

A 0 —

B 0 —

C 0 —

free: 10
(g)

Has Max

4 Fall 2000, Lecture 21

Deadlock Avoidance —
Safe and Unsafe States (cont.)

n Suppose we start in state (a), and reach
state (b) by giving A another resource

● B runs, asks for 2 more resources, 0 free
n B finishes, releases its resources, 4 free

● C can’t run — might want 5 resources
n Same for A

n State (b) is unsafe, meaning that from
there, deadlock may eventually occur

n State (b) is not a deadlocked state — the
system can still run for a bit

n Deadlock may not occur — A might
release one of its resources before asking
for more, which allows C to complete

A 3 9

B 2 4

C 2 7

free: 3
(a)

Has Max

A 4 9

B 2 4

C 2 7

free: 2
(b)

Has Max

A 4 9

B 4 4

C 2 7

free: 0
(c)

Has Max

A 4 9

B 0 —

C 2 7

free: 4
(d)

Has Max

5 Fall 2000, Lecture 21

The Banker’s Algorithm for Single
Resources (Dijkstra, 1965)

n A banker has granted lines of credit to
customers A, B, C, and D (unit is $1000)

● She knows it’s not likely they will all need
their maximum credit at the same time, so
she keeps only 10 units of cash on hand

● At some point in time, the bank is in state
(b) above, which is safe
n Can let C finish, have 4 units available

n Then let B or D finish, etc.

● But… if banker gives B one more unit
(state (c) above), state would be unsafe
— if everyone asks for maximum credit,
no requests can be fulfilled

B 0 5

C 0 4

D 0 7

free: 10
(a)

Has Max

B 1 5

C 2 4

D 4 7

free: 2
(b)

Has Max

B 2 5

C 2 4

D 4 7

free: 1
(c)

Has Max

A 0 6 A 1 6 A 1 6

6 Fall 2000, Lecture 21

The Banker’s Algorithm for Single
Resources (cont.)

n Resource-request algorithm:

● The banker considers each request as it
occurs, determining whether or not
fulfilling it leads to a safe state
n If it does, the request is granted

n Otherwise, it is postponed until later

n Safety algorithm:

● To determine if a state is safe, the banker
checks to see if she has enough
resources to satisfy some customer
n If so, she assumes those loans will be

repaid (i.e., the process will use those
resources, finish, and release all of its
resources), and she checks to see if she
has enough resources to satisfy another
customer, etc.

● If all loans can eventually be repaid, the
state is safe and the initial request can be
granted

7 Fall 2000, Lecture 21

Evaluation of Deadlock Avoidance
Using the Banker’s Algorithm

n Advantages:

● No need to preempt resources and
rollback state (as in deadlock detection &
recovery)

● Less restrictive than deadlock prevention

n Disadvantages:

● Maximum resource requirement for each
process must be stated in advance

● Processes being considered must be
independent (i.e., unconstrained by
synchronization requirements)

● There must be a fixed number of
resources (i.e., can’t add resources,
resources can’t break) and processes
(i.e., can’t add or delete processes)

● Huge overhead — must use the algorithm
every time a resource is requested

8 Fall 2000, Lecture 21

Evaluating the Approaches to
Dealing with Deadlock

n The Ostrich Approach — ignoring the
problem

● Good solution if deadlock isn’t frequent

n Deadlock prevention — eliminating one
of the 4 deadlock conditions

● May be overly restrictive

n Deadlock detection and recovery —
detect when deadlock has occurred, then
break the deadlock

● Tradeoff between frequency of detection
and performance / overhead added

n Deadlock avoidance — only fulfilling
requests that will not lead to deadlock

● Need too much a priori information, not
very dynamic (can’t add processes or
resources), huge overhead

