
1 Fall 2000, Lecture 22

Classifying Information
Stored in Memory

n By role in program:

● Program instructions     (unchangeable)

● Constants:     (unchangeable)
n pi, maxnum, strings used by printf/scanf

● Variables:         (changeable)
n Locals, globals, function parameters,

dynamic storage (from malloc or new)

n Initialized or uninitialized

n By protection status:

● Readable and writable:  variables

● Read-only:  code, constants

● Important for sharing data and/or code

n Addresses vs. data:

● Must modify addresses if program is
moved (relocation, garbage collection)

2 Fall 2000, Lecture 22

Memory Management in a
Uniprogrammed System

n OS gets a fixed segment of memory
(usually highest memory)

n One process executes at a time in a
single memory segment

● Process is always loaded at address 0

● Compiler and linker generate physical
addresses

● Maximum address = memory size – OS
size

A

OS

B

OS

C

OS

0

2200

2400

1200

0

2200

2400

700

0

2200

2400

1700

address main
memory

address main
memory

address main
memory

3 Fall 2000, Lecture 22

Classifying Information
Stored in Memory (cont.)

n Binding time (when is space allocated?):

● Static:  before program starts running
n Program code, static global variables

(initialized and uninitialized)

● Dynamic:  as program runs
n Procedure stack, dynamic storage (space

allocated by malloc or new)

n UNIX view of a process’s memory
(doesn’t consider threads):

stack

code

static variables
(uninitialized,

initialized)

dynamic storage
(from new, malloc)

max
address

address
0

stack segment

data segment

text segment

bss segment

heap

4 Fall 2000, Lecture 22

Segments of a Process

n Process’ memory is divided into logical
segments (text, data, bss, heap, stack)

● Some are read-only, others read-write

● Some are known at compile time, others
grow dynamically as program runs

n Who assigns memory to segments?

● Compiler and assembler generate an
object file (containing code and data
segments) from each source file

● Linker combines all the object files for a
program into a single executable object
file, which is complete and self-sufficient

● Loader (part of OS) loads an executable
object file into memory at location(s)
determined by the operating system

● Program (as it runs) uses new and malloc
to dynamically allocate memory, gets
space on stack during function calls



5 Fall 2000, Lecture 22

Linking

n Functions of a linker:

● Combine all files and libraries of a program

● Regroup all the segments from each file
together (one big data segment, etc.)

● Adjust addresses to match regrouping

● Result is an executable program

n Contents of object files:

● File header — size and starting address
(in memory) of each segment

● Segments for code and initialized data

● Symbol table (symbols, addresses)

● Patch list (symbols, location)

● Relocation information (symbols, location)

● Debugging information

● For UNIX details, type “man a.out”

6 Fall 2000, Lecture 22

Why is Linking Difficult?

n When assembler assembles a file, it may
find external references — symbols it
doesn’t know about (e.g., printf, scanf)

● Compiler just puts in an address of 0 when
producing the object code

● Compiler records external symbols and
their location (in object file) in a patch list,
and stores that list in the object file

● Linker must resolve  those external
references as it links the files together

n Compiler doesn’t know where program will
go in memory (if multiprogramming,
always 0 for uniprogramming)

● Compiler just assumes program starts at 0

● Compiler records relocation information
(location of addresses to be adjusted
later), and stores it in the object file

7 Fall 2000, Lecture 22

Loading

n The loader loads the completed program
into memory where it can be executed

● Loads code and initialized data segments
into memory at specified location

● Leaves space for uninitialized data (bss)

● Returns value of start address to
operating system

n Alternatives in loading (next 2 lectures…)

● Absolute loader — loads executable file at
fixed location

● Relocatable loader — loads the program
at an arbitrary memory location specified
by OS (needed for multiprogramming, not
for uniprogramming)
n Assembler and linker assume program will

start at location 0

n When program is loaded, loader modifies
all addresses by adding the real start
location to those addresses

8 Fall 2000, Lecture 22

Running the Program —
Static Memory Allocation

n Compiling, linking, and loading is
sufficient for static memory

● Code, constants, static variables

n In other cases, static allocation is not
sufficient:

● Need dynamic storage — programmer
may not know how much memory will be
needed when program runs
n Use malloc or new to get what’s

necessary when it’s necessary

n For complex data structures (e.g., trees),
allocate space for nodes on demand

● OS doesn’t know in advance which
procedures will be called (would be
wasteful to allocate space for every
variable in every procedure in advance)

● OS must be able to handle recursive
procedures



9 Fall 2000, Lecture 22

Running the Program —
Dynamic Memory Allocation

n Dynamic memory requires two
fundamental operations:

● Allocate dynamic storage

● Free memory when it’s no longer needed

● Methods vary for stack and heap

n Two basic methods of allocation:

● Stack (hierarchical)
n Good when allocation and freeing are

somewhat predictable

n Typically used:
– to pass parameters to procedures
– for allocating space for local variables

inside a procedure

– for tree traversal, expression evaluation,
parsing, etc.

n Use stack operations: push and pop
n Keeps all free space together in a

structured organization

n Simple and efficient, but restricted
10 Fall 2000, Lecture 22

Running the Program —
Dynamic Memory Allocation (cont.)

n Two basic methods of allocation:

● Heap
n Used when allocation and freeing are not

predictable

n Typically used:
– for arbitrary list structures, complex data

organizations, etc.

n Use new or malloc to allocate space, use
delete or free to release space

n System memory consists of allocated
areas and free areas (holes)

n Problem:  eventually end up with many
small holes, each too small to be useful

– This is called fragmentation, and it leads to
wasted memory

– Fragmentation wasn’t a problem with stack
allocation, since we always add/delete
from top of stack

– Solution goal:  reuse the space in the
holes in such a way as to keep the number
of holes small, and their size large

n Compared to stack:  more general, less
efficient, more difficult to implement


