
1 Fall 2000, Lecture 27

Topics in Memory Management
(Review)

n Uniprogrammed operating systems

● Assembling, linking, loading

● Static memory allocation

● Dynamic memory allocation
n Stacks, heaps

n Managing the free list, memory
reclamation

n Multiprogrammed operating systems

● Includes most of the above topics

● Static relocation

● Dynamic relocation
n Virtual vs. physical address

n Partitioning (and compaction)
n Segmentation

n Paging

● Swapping

● Demand paging
2 Fall 2000, Lecture 27

Memory Management So Far

n An application's view of memory is its
virtual address space

n OS’s view of memory is the physical
address space

n A MMU (hardware) is used to implement
segmentation, paging, or a combination
of the two, by providing address
translation

n Limitation until now — all segments /
pages of a process must be in main
(physical) memory for it to run

n Insight — at a given time, we probably
only need to access some small subset
of process’s virtual memory

● Load pages / segments on demand

3 Fall 2000, Lecture 27

Demand Paging (Virtual Memory)

n At a given time, a virtual memory page
will be stored either:

● In a frame in physical memory

● On disk (backing store, or swap space)

n A process can run with only part of its
virtual address space in main memory

● Provide illusion of almost infinite memory

virtual
memory

physical
memory

MMU

disk (swap space)

4 Fall 2000, Lecture 27

Starting a New Process

n Processes are started with 0 or more of
their virtual pages in physical memory,
and the rest on the disk

n Page selection — when are new pages
brought into physical memory?

● Prepaging — pre-load enough to get
started: code, static data, one stack page
(DEC ULTRIX)

● Demand paging — start with 0 pages,
load each page on demand (when a page
fault occurs) (most common approach)
n Disadvantage: many (slow) page faults

when program starts running

n Demand paging works due to the
principle of locality of reference

● Knuth estimated that 90% of a program’s
time is spent in 10% of the code

5 Fall 2000, Lecture 27

Page Faults

n An attempts to access a page that’s not
in physical memory causes a page fault

● Page table must include a present bit
(sometimes called valid bit) for each page

● An attempt to access a page without the
present bit set results in a page fault, an
exception which causes a trap to the OS

● When a page fault occurs:
n OS must page in the page — bring it from

disk into a free frame in physical memory

n OS must update page table & present bit
n Faulting process continues execution

n Unlike interrupts, a page fault can occur
any time there’s a memory reference

● Even in the middle of an instruction!
(how? and why not with interrupts??)

● However, handling the page fault must be
invisible to the process that caused it

6 Fall 2000, Lecture 27

Handling Page Faults

n The page fault handler must be able to
recover enough of the machine state (at
the time of the fault) to continue
executing the program

n The PC is usually incremented at the
beginning of the instruction cycle

● If OS / hardware doesn’t do anything
special, faulting process will execute the
next instruction (skipping faulting one)

n With hardware support:

● Test for faults before executing instruction
(IBM 370)

● Instruction completion — continue where
you left off (Intel 386…)

● Restart instruction, undoing (if necessary)
whatever the instruction has already done
(PDP-11, MIPS R3000, DEC Alpha, most
modern architectures)

7 Fall 2000, Lecture 27

Performance of Demand Paging

n Effective access time for demand-paged
memory can be computed as:

eacc = (1–p)(macc) + (p)(pfault)

where:

p = probability that page fault will occur

macc = memory access time

pfault = time needed to service page fault

n With typical numbers:

eacc = (1–p)(100) + (p)(25,000,000)
= 100 + (p)(24,999,800)

● If p is 1 in 1000,
eacc = 25,099 ns (250 times slower!)

● To keep overhead under 10%,
110 > 100 + (p)(24,999,800)
n p must be less than 0.0000004

n Less than 1 in 2,5000,000 memory
accesses must page fault!

8 Fall 2000, Lecture 27

Page Replacement

n When the OS needs a frame to allocate
to a process, and all frames are busy, it
must evict (copy to backing store) a page
from its frame to make room in memory

● Reduce overhead by having CPU set a
modified / dirty bit to indicate that a page
has been modified
n Only copy data back to disk for dirty pages

n For non-dirty pages, just update the page
table to refer to copy on disk

n Which page to we choose to replace?
Some page replacement policies:

● Random
n Pick any page to evict

● FIFO
n Evict the page that has been in memory

the longest (use a queue to keep track)

n Idea is to give all pages “fair” (equal) use
of memory

