
1 Fall 2000, Lecture 28

Page Replacement Policy

n When OS needs a frame to use, and all
are busy, which page does it evict?

● Random
n Pick any page to evict

● FIFO
n Evict the page that has been in memory

the longest (use a queue to keep track)

● Optimal (Minimal)
n Evict the page that will be referenced the

farthest into the future
– Requires knowledge of future

n Cannot really be implemented
– Useful for evaluating other policies

● Least-Recently-Used (LRU)
n Use the past to predict the future

n Evict the page that has been unreferenced
for the longest period of time

2 Fall 2000, Lecture 28

Page Reference Example

n Assumptions: 4 pages, 3 frames
Page references: ABCABDADBCB

frame 1
frame 2
frame 3

A B C A B D A D B C BFIFO

frame 1
frame 2
frame 3

A B C A B D A D B C BOptimal

frame 1
frame 2
frame 3

A B C A B D A D B C BLRU

3 Fall 2000, Lecture 28

Implementing LRU

n A perfect implementation would be
something like this:

● Associate a clock register with every
page in physical memory

● Update the clock value at every access

● During replacement, scan through all the
pages and find the one with the lowest
value in its clock register

● What’s wrong with all this?

n Simple approximations:

● FIFO

● Not-recently-used (NRU)
n Use an R (reference) bit, and set it

whenever a page is referenced
n Clear the R bit periodically, such as every

clock interrupt

n Choose any page with a clear R bit to
evict

4 Fall 2000, Lecture 28

Implementing LRU (cont.)

n Clock / Second Chance Algorithm

● Use an R (reference) bit as before

● On a page fault, circle around the “clock”
of all pages in the user memory pool
n Start after the page examined last time

n If the R bit for the page is set, clear it

n If the R bit for the page is clear, replace
that page and set the bit

● Questions:
n Can it loop forever?
n What does it mean if the “hand” is moving

slowly? …if the hand is moving quickly?

n Least Frequently Used (LFU) / N-th
Chance Algorithm

● Don’t evict a page until hand has swept
by N times

● Use an R bit and a counter

● How is N chosen? Large or small?

5 Fall 2000, Lecture 28

Frame Allocation

n How many frames does each process
get (M frames, N processes)?

● At least 2 frames (one for instruction, one
for memory operand), maybe more…

● Maximum is number in physical memory

n Allocation algorithms:

● Equal allocation
n Each gets M / N frames

● Proportional allocation
n Number depends on size and priority

n Which pool of frames is used for
replacement?

● Local replacement
n Process can only reuse its own frames

● Global replacement
n Process can reuse any frame (even if

used by another process)
6 Fall 2000, Lecture 28

Thrashing

n Consider what happens when memory
gets overcommitted:

● After each process runs, before it gets a
chance to run again, all of its pages may
get paged out

● The next time that process runs, the OS
will spend a lot of time page faulting, and
bringing the pages back in
n All the time it’s spending on paging is time

that it’s not getting useful work done
n With demand paging, we wanted a very

large virtual memory that would be as fast
as physical memory, but instead we’re
getting one that’s as slow as the disk!

n This wasted activity due to frequent
paging is called thrashing

● Analogy — student taking too many
courses, with too much work due

7 Fall 2000, Lecture 28

Working Sets

n Thrashing occurs when the sum of all
processes’ requirement is greater than
physical memory

n Solution — use local page frame
replacement, don’t let processes compete

– Doesn’t help, as an individual process can
still thrash

n Solution — only give a process the
number of frames that it “needs”

– Change number of frames allocated to
each process over time

– If total need is too high, pick a process and
suspend it

n Working set (Denning, 1968) — the
collection of pages that a process is
working with, and which must be resident
in main memory, to avoid thrashing

● Always keep working set in memory

● Other pages can be discarded as
necessary

8 Fall 2000, Lecture 28

Rules for “The Paging Game”

1. Each player gets several million things.

2. Things are kept in crates that hold 1024 things
each. Things in the same crate are called crate-
mates.

3. Crates are stored either in the workshop or the
warehouse. The workshop is almost always too
small to hold all the crates.

4. There is only one workshop but there may be
several warehouses. Everybody shares them.

5. Each thing has its own thing number.

6. What you do with a thing is to zark it. Everybody
takes turns zarking.

7. You can only zark your things, not anybody
else’s.

8. Things can only be zarked when they are in the
workshop.

9. Only the Thing King knows whether a thing is in
the workshop or in a warehouse.

10. The longer a thing goes without being zarked,
the grubbier it is said to become.

9 Fall 2000, Lecture 28

Rules for “The Paging Game” (cont.)

11. The way you get things is to ask the Thing King.

12. The way you zark a thing is to give its thing
number. If you give the number of a thing that
happens to be in a workshop it gets zarked right
away. If it is in a warehouse, the Thing King
packs the crate containing your thing back into
the workshop. If there is no room in the
workshop, he first finds the grubbiest crate in the
workshop, whether it be yours or somebody
else’s, and packs it off with all its crate-mates to a
warehouse. In its place he puts the crate
containing your thing. Your thing then gets
zarked and you never know that it wasn’t in the
workshop all along.

13. Each player’s stock of things have the same
numbers as everybody else’s. The Thing King
always knows who owns what thing and whose
turn it is, so you can’t ever accidentally zark
somebody else’s thing even if it has the same
thing number as one of yours.

10 Fall 2000, Lecture 28

Notes on “The Paging Game”

1. Traditionally, the Thing King sits at a large,
segmented table and is attended to by pages (the
so-called “table pages”) whose job it is to help the
king remember where all the things are and who
they belong to.

2. One consequence of Rule 13 is that everybody’s
thing numbers will be similar from game to game,
regardless of the number of players.

3. The Thing King has a few things of his own,
some of which move back and forth between
workshop and warehouse just like anybody
else’s, but some of which are just too heavy to
move out of the workshop.

4. With the given set of rules, oft-zarked things tend
to get kept mostly in the workshop while little-
zarked things stay mostly in a warehouse. This is
efficient stock control.

Long Live the Thing King!

