
1 Fall 2000, Lecture 31

UNIX File System
(Review)

n High-level view:

n Low-level view:

Diagram from Advanced Programming in the UNIX Environment, W. Richard Stevens,
Addison Wesley, 1992.

disk drive

partition partition

directory blocks and file data blocksboot
blocks

super-
block ilist

inode inode inode inode inode

2 Fall 2000, Lecture 31

Working with Directories

n Searching a directory in UNIX:

● If filename begins with “ / ”, start at root of
the file system tree (inode 2)

● If filename begins with “ ~ ”, start at the
user’s home directory

● If filename begins with any other character,
start at current working directory

n Working directories

● A file name can be given as the full
pathname, separating levels by “ / “

● UNIX also keeps track of the inode number
of current working directory for each
process; we don’t have to use full names

n A UNIX directory has two special entries

● “ . ” refers to the directory itself

● “ .. ” refers to the parent directory

3 Fall 2000, Lecture 31

Working with Directories (Lookup)

n A directory is a table of entries:

● 2 bytes — inumber

● 14 bytes — file name (improved in BSD
4.2 and later)

n Search to find the file begins with either
root, or the current working directory

● Inode 2 points to the root directory (“ / ”)

● Example above shows lookup of
/usr/ast/mbox

4 Fall 2000, Lecture 31

Working with Directories (Links)

n UNIX supports links — two directories
containing the same file

● Example: aos/nachos & os/nachos

n Hard links (“ ln target_file directory ”)

● Specified directory refers to the target file
n Both directories point to same inode

● Link count in inode is used to ensure that
the file is deleted only when the last
directory entry referring to it is removed

n Soft / symbolic links
(“ ln –s target_file directory ”)

● Adds a pointer to the target file (or target
directory) from the specified directory
n Special bit is set in inode, and the file just

contains the name of the file it’s linked to
n View symbolic links with “ls –F” and “ls –l”

● Can link across disk drives

5 Fall 2000, Lecture 31

Organization of Files
(Contiguous Allocation)

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

n OS keeps an ordered list of free blocks

● Allocates contiguous groups of blocks
when it creates a file

● File descriptor must store start block and
length of file

n Used in IBM 370, some write-only disks

6 Fall 2000, Lecture 31

Organization of Files
(Linked / Chained Allocation)

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

n OS keeps an ordered list of free blocks

● File descriptor stores pointer to first block

● Each block stores pointer to next block

n Used in DEC TOPS-10, Xerox Alto

7 Fall 2000, Lecture 31

Organization of Files (Compaction for
Contiguous and Linked Allocation)

Diagrams from Operating Systems, William Stallings, Prentice Hall, 1995.
8 Fall 2000, Lecture 31

Organization of Files
(Indexed Allocation)

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

n OS keeps a list of free blocks

● OS allocates an array (called the index
block) to hold pointers to all the blocks
used by the file

● Allocates blocks only on demand

● File descriptor points to this array

n Used in DEC VMS, Nachos

9 Fall 2000, Lecture 31

Organization of Files
(Multilevel Indexed Allocation)

n Used in UNIX (numbers below are for
traditional UNIX, BSD UNIX 4.1)

n Each inode (file descriptor) contains 13
block pointers

● First 10 pointers point to data blocks
(each 512 bytes long) of a file
n If the file is bigger than 10 blocks (5,120

bytes), the 11th pointer points to a single
indirect block, which contains 128 pointers
to 128 more data blocks (can support files
up to 70,656 bytes)

– If the file is bigger than that, the 12th
pointer points to a double indirect block,
which contains 128 pointers to 128 more
single indirect blocks (can support files up
to 8,459,264 bytes)

» If the file is bigger than that, the 13th
pointer points to a triple indirect block,
which contains 128 pointers to 128
more double indirect blocks

● Max file size is 1,082,201,087 bytes

10 Fall 2000, Lecture 31

Organization of Files
(Multilevel Indexed Allocation) (cont.)

Diagram from Modern Operating Systems, Andrew Tanenbaum, Prentice Hall, 1992.

n BSD UNIX 4.2, 4.3:

● Maximum block size is 4096 bytes

● Inode contains 14 block pointers
n 12 to data

n 13 to single indirect block containing 1024
pointers, 14 to triple indirect block…

● Max file size is 232 bytes

