
1 Fall 2001, Lecture 04

Process Management

n OS manages many kinds of activities:

● User programs

● System programs:  printer spoolers,
name servers, file servers, etc.

n Each is encapsulated in a process

● A process includes the complete
execution context (code, data, PC,
registers, files & I/O devices in use, etc.)

● A process is not a program
n A process is one instance of a program in

execution; many processes can be
running the same program

n OS must:

● Create, delete, suspend, resume, and
schedule processes

● Support inter-process communication and
synchronization, handle deadlock

2 Fall 2001, Lecture 04

Memory Management

n Primary (Main) Memory

● Provides direct access storage for CPU

● Processes must be in main memory to
execute

n OS must:

● Mechanics
n Keep track of memory in use

n Keep track of unused (“free”) memory
n Protect memory space

n Allocate, deallocate space for processes

n Swap processes:  memory <–> disk

● Policies
n Decide when to load each process into

memory

n Decide how much memory space to
allocate each process

n Decide when a process should be
removed from memory

3 Fall 2001, Lecture 04

File System Management

n File System

● Disks (secondary storage) provide long-
term storage, but are awkward to use
directly

● File system provides files and various
operations on files
n A file is a long-term storage entity, a

named collection of persistent information
that can be read or written

n A file system supports directories, which
contain files and other directories

– Name, size, date created, date last
modified, owner, etc.

n OS must:

● Create and delete files and directories

● Manipulate files and directories
n Read, write, extend, rename, copy, protect

● Provide general higher-level services
n Backups, accounting, quotas

4 Fall 2001, Lecture 04

Disk Management

n Disk

● The actual hardware that sits underneath
the file system

● Large enough to store all user programs
and data, application programs, entire OS

● Persistent — endures system failures

n OS must:

● Manage disk space at low level:
n Keep track of used spaces

n Keep track of unused (free) space
n Keep track of “bad blocks”

● Handle low-level disk functions, such as:
n Scheduling of disk operations

n Head movement

● Note fine line between disk management
and file system management



5 Fall 2001, Lecture 04

Operating System Services

n OS services for programmer:

● Program execution – method to load a
program into memory and to run it

● I/O operations –  since user programs
cannot execute I/O operations directly,
the OS must provide a way to allow I/O

● File-system manipulation – methods to
read, write, create, and delete files

● Communications – method to exchange
information between processes on either
same or different computers

n OS services for user:

● Resource allocation – allocate resources
to multiple users or multiple processes

● Accounting – keep track of users and
resource usage

● Protection – ensuring that all access to
system resources is controlled

6 Fall 2001, Lecture 04

System Calls

n System calls provide the interface
between a running program and the OS

● Available in assembly-language

● High-level languages allow system calls
to be made directly (e.g., C, C++)

● Three methods are used to pass
parameters from program to OS:
n Pass parameters in registers

n Store parameters in a table in memory,
pass table address via a register

n Pass parameters via a stack

n Types of system calls:

● Process control

● File manipulation

● Device management

● Information maintenance

● Communication

7 Fall 2001, Lecture 04

One OS Structure:  Layers

n Divide OS into layers, each layer uses
services provided by next lower layer

● User programs

● Shell & compilers

● CPU scheduling & memory management

● Device drivers

● Hardware

n Advantages:  modularity, easy debugging

● Disadvantages:  difficult to design when
layers interact, performance

n Examples:

● Historic: THE (1968), Venus (1972)

● More recent:  MS-DOS, OS/2 (1988),
Windows NT 3.0

● Not very popular at the moment

8 Fall 2001, Lecture 04

Another OS Structure:  Large Kernel

n The kernel is the protected part of the OS
that runs in kernel mode

● Critical OS data structures and registers
are protected from user programs

● Can use privileged instructions

n Example:  early versions of UNIX

signals
terminals
character I/O

files
swapping
disk, tape

CPU scheduling
page replacement
virtual memory

terminal
  controllers

device
  controllers

memory
  controllers

kernel

sytem services:  shells, compilers, printing, network access

system calls

user programs

hardware:  terminals, I/O devices, memory

machine-
independent

machine-
dependent



9 Fall 2001, Lecture 04

Another OS Structure:  Microkernel

n Goal is to minimize what goes in the
kernel, implementing as much of the OS
as possible in user-mode processes

● Easier to port & extend, more reliable

● Lower performance (unfortunately)

n Examples:  Mach (US), Windows NT &
XP, Mac OS X (based on Mach)

user
processes

file
system

CPU
scheduling

thread
system

network
support paging

system
processes

micro-
kernel communication     protection     low-level VM     processor control

user
mode

kernel
mode

10 Fall 2001, Lecture 04

Virtual Machines

n A virtual machine provides an interface
identical to the underlying bare hardware
for multiple users

● The OS gives each process the illusion of
having its own processor, memory, etc.
n Resources of the physical computer are

shared to create the virtual machines

● Each user can run any OS or programs
that runs on the underlying machine

n Advantages / disadvantages:

● Protection of resources / no sharing

● Difficult to provide an exact duplicate of
the underlying machine

n Examples:  IBM VM/370 (first)

● VMware — multiple OS’s on one PC

● Java Virtual Machine (JVM) — executes
compiled Java programs


