
1 Fall 2001, Lecture 08

Conventional View of Processes

n A process can be viewed two ways:

● A unit of resource ownership
n A process has an address space,

containing program code and data

n A process may have open files, may be
using an I/O device, etc.

● A unit of scheduling
n The CPU scheduler dispatches one

process at a time onto the CPU

n Associated with a process are values in
the PC, SP, and other registers

n Insight (~1988) — these two are usually
linked, but they don’t have to be

n In many recent operating systems (UNIX,
Windows NT), the two are independent:

● Process = unit of resource ownership

● Thread = unit of scheduling

2 Fall 2001, Lecture 08

Processes vs. Threads

n Process = unit of resource ownership

● A process (sometimes called a
heavyweight process) has:
n Address space

n Program code

n Global variables, heap, stack
n OS resources (files, I/O devices, etc.)

n Thread = unit of scheduling

● A thread (sometimes called a lightweight
process) is a single sequential execution
stream within a process

● A thread shares with other threads:
n Address space, program code
n Global variables, heap

n OS resources (files, I/O devices)

● A thread has its own:
n Registers, Program Counter (PC)

n Stack, Stack Pointer (SP)

3 Fall 2001, Lecture 08

Processes vs. Threads

n A thread is bound to a particular process

● A process may contain multiple threads of
control inside it

● Threads can block, create children, etc.

n All of the threads in a process:

● Share address space, program code,
global variables, heap, and OS resources

● Execute concurrently (has its own
register, PC, SP, etc. values)

PC

PC

shared global data

thread A

process X's address space

stack stack

thread B

access to
printer

open file
"output.txt"

4 Fall 2001, Lecture 08

Why Threads?

n A process with multiple threads makes a
great server (e.g., printer server):

● Have one server process, many “worker”
threads — if one thread blocks (e.g., on a
read), others can still continue executing

● Threads can share common data; don’t
need to use inter-process communication

● Can take advantage of multiprocessors

n Threads are cheap!

● Cheap to create — only need a stack and
storage for registers

● Use very little resources — don’t need
new address space, global data, program
code, or OS resources

● Context switches are fast — only have to
save / restore PC, SP, and registers

n But… no protection between threads!

5 Fall 2001, Lecture 08

User-Level Threads

n User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

✔ Doesn’t require modification to the OS

✔ Simple representation — each thread is
represented simply by a PC, registers,
stack, and a small control block, all stored
in the user process’ address space

✔ Simple management — creating a new
thread, switching between threads, and
synchronization between threads can all
be done without intervention of the kernel

✔ Fast — thread switching is not much
more expensive than a procedure call

✔ Flexible — CPU scheduling (among those
threads) can be customized to suit the
needs of the algorithm

6 Fall 2001, Lecture 08

User-Level Threads (cont.)

n User-level threads = provide a library of
functions to allow user processes to
create and manage their own threads

✘ Lack of coordination between threads and
OS kernel
n Process as a whole gets one time slice
n Same time slice, whether process has 1

thread or 1000 threads

n Also — up to each thread to relinquish
control to other threads in that process

✘ Requires non-blocking system calls (i.e.,
a multithreaded kernel)
n Otherwise, entire process will blocked in

the kernel, even if there are runnable
threads left in the process

✘ If one thread causes a page fault, the
entire process blocks

7 Fall 2001, Lecture 08

Kernel-Level Threads

n Kernel-level threads = kernel provides
system calls to create and manage
threads

✔ Kernel has full knowledge of all threads
n Scheduler may choose to give a process

with 10 threads more time than process
with only 1 thread

✔ Good for applications that frequently
block (e.g., server processes with
frequent interprocess communication)

✘ Slow — thread operations are 100s of
times slower than for user-level threads

✘ Significant overhead and increased
kernel complexity — kernel must manage
and schedule threads as well as
processes
n Requires a full thread control block (TCB)

for each thread

8 Fall 2001, Lecture 08

Two-Level Thread Model
(Digital UNIX, Solaris, IRIX, HP-UX)

n User-level threads for user processes

● “Lightweight process” (LWP) serves as a
“virtual CPU” where user threads can run

n Kernel-level threads for use by kernel

● One for each LWP

● Others perform tasks not related to LWPs

n OS supports multiprocessor systems

task 1 task 2 task 3 user-level
thread

lightweight
process

kernel
thread

kernel

CPU CPU CPU CPU

