
1 Fall 2001, Lecture 10

The Producer-Consumer Problem
(Review from Lecture 07)

n One thread is a producer of information;
another is a consumer of that information

● They share a bounded circular buffer

● Processes — OS must support shared
memory between processes

● Threads — all memory is shared

var buffer: array[0..n-1] of items; /* circular array */
in = 0
out = 0

/* producer */ /* consumer */
repeat forever repeat forever

… while (in == out)
produce item nextp do nothing
… nextc = buffer[out]
while (in+1 mod n == out) out = out+1 mod n

do nothing …
buffer[in] = nextp consume item nextc
in = in+1 mod n …

end repeat end repeat

free free full full full free free

out in

0 1 2 3 4 5 6
n = 7

2 Fall 2001, Lecture 10

Too Much Milk!

Time You Your Roommate

3:00 Arrive home
3:05 Look in fridge, no milk
3:10 Leave for grocery
3:15 Arrive home
3:20 Arrive at grocery Look in fridge, no milk
3:25 Buy milk, leave Leave for grocery
3:30
3:35 Arrive home Arrive at grocery
3:36 Put milk in fridge
3:40 Buy milk, leave
3:45
3:50 Arrive home
3:51 Put milk in fridge

3:51 Oh, no! Too much milk!!

n The problem here is that the lines:
“Look in fridge, no milk”

through
“Put milk in fridge”

are not an atomic operation

3 Fall 2001, Lecture 10

Another Example

Thread A Thread B

i = 0 i = 0
while (i < 10) while (i > –10)

i = i + 1 i = i – 1
print “A wins” print “B wins”

n Assumptions:

● Memory load and store are atomic

● Increment and decrement are not atomic

n Questions:

● Who wins?

● Is it guaranteed that someone wins?

● What if both threads have their own CPU,
running concurrently at exactly the same
speed? Is it guaranteed that it goes on
forever?

● What if they are sharing a CPU?

4 Fall 2001, Lecture 10

Critical Section & Mutual Exclusion

n Critical section (region) — code that only
one thread can execute at a time (e.g.,
code that modifies shared data)

n Mutual exclusion — ensures that only
one thread does a particular activity at a
time — all other threads are excluded
from doing that activity

● More formally, if process Pi is executing
in its critical section, then no other
processes can be executing in their
critical sections

n Lock — mechanism that prevents
another thread from doing something:

● Lock before entering a critical section

● Unlock when leaving a critical section

● Thread wanting to enter a locked critical
section must wait until it’s unlocked

5 Fall 2001, Lecture 10

Enforcing Mutual Exclusion

n Methods to enforce mutual exclusion

● Up to user — threads have to explicitly
coordinate with each other

● Up to OS — support for mutual exclusion

● Up to hardware —architectural support

n Solution must make progress — if no
process is executing in its critical section,
and there exist some processes that wish
to enter their critical section, then the
selection of the processes that will enter
the critical section next cannot be
postponed indefinitely

● Avoid starvation — if a thread starts trying
to gain access to the critical section, then
it should eventually succeed

● Avoid deadlock — if some threads are
trying to enter their critical sections, then
one of them must eventually succeed

6 Fall 2001, Lecture 10

Algorithm 1

n Informal description:

● Igloo with blackboard inside
n Only one person (thread) can fit in the

igloo at a time

n In the igloo is a blackboard, which is large
enough to hold only one value

● A thread that wants to execute the critical
section enters the igloo, and examines
the blackboard
n If its number is not on the blackboard, it

leaves the igloo, goes outside, and runs
laps around the igloo

– After a while, it goes back inside, and
checks the blackboard again

– This “busy waiting” continues until
eventually its number is on the blackboard

n If its number is on the blackboard, it
leaves the igloo and goes on to the critical
section

n When it returns from the critical section, it
enters the igloo, and writes the other
thread’s number on the blackboard

7 Fall 2001, Lecture 10

Algorithm 1 (cont.)

n Code:

t1 () {
while (true) {

while (turn != 1)
; /* do nothing */

… critical section of code …
turn = 2;
… other non-critical code …

}
}

t2 () {
while (true) {

while (turn != 2)
; /* do nothing */

… critical section of code …
turn = 1;
… other non-critical code …

}
}

8 Fall 2001, Lecture 10

Algorithm 2a

n Informal description:

● Each thread has its own igloo
n A thread can examine and alter its own

blackboard

n A thread can examine, but not alter, the
other thread’s blackboard

n “true” on blackboard = that thread is in the
critical section

● A thread that wants to execute the critical
section enters the other thread’s igloo,
and examines the blackboard
n It looks for “false” on that blackboard,

indicating that the other thread is not in the
critical section

– When that happens, it goes back to its
own igloo, and writes “true” on its own
blackboard, and then goes on to the
critical section

n When it returns from the critical section, it
enters the igloo, and writes “false” on the
blackboard

9 Fall 2001, Lecture 10

Algorithm 2a (cont.)

n Code:

t1 () {
while (true) {

while (t2_in_crit == true)
; /* do nothing */

t1_in_crit = true;
… critical section of code …
t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

while (t1_in_crit == true)
; /* do nothing */

t2_in_crit = true;
… critical section of code …
t2_in_crit = false;
… other non-critical code …

}
}

10 Fall 2001, Lecture 10

Algorithm 2b

n Code:

t1 () {
while (true) {

t1_in_crit = true;
while (t2_in_crit == true)

; /* do nothing */
… critical section of code …
t1_in_crit = false;
… other non-critical code …

}
}

t2 () {
while (true) {

t2_in_crit = true;
while (t1_in_crit == true)

; /* do nothing */
… critical section of code …
t2_in_crit = false;
… other non-critical code …

}
}

