
1 Fall 2001, Lecture 12

Two Versions of Semaphores

n Semaphores from last time (simplified):

wait (s): signal (s):

s = s – 1 s = s + 1
if (s < 0) if (s ≤ 0)

block the thread wake up one of
that called wait(s) the waiting threads

otherwise
continue into CS

n "Classical" version of semaphores:

wait (s): signal (s):

if (s ≤ 0) if (a thread is waiting)
block the thread wake up one of
that called wait(s) the waiting threads

s = s – 1 s = s + 1
continue into CS

n Do both work? What is the difference??

2 Fall 2001, Lecture 12

Implementing Semaphores

n Implementing semaphores using busy-
waiting:

wait (s): signal (s):

while (s ≤ 0) s = s + 1
do nothing;

s = s – 1

n Evaluation:

✘ Waiting threads wastes time busy-waiting
(doing nothing useful, wasting CPU time)

✘ The code inside wait(s) and signal(s) is a
critical section also, and it’s not protected

✘ Doesn’t support a queue of multiple
blocked threads waiting on the
semaphore (why is this bad?)

3 Fall 2001, Lecture 12

Implementing Semaphores
(cont.)

n Implementing semaphores (not fully) by
disabling interrupts:

wait (s): signal (s):

disable interrupts disable interrupts
while (s ≤ 0) s = s + 1

do nothing;
s = s – 1
enable interrupts enable interrupts

n Evaluation:

✔ Protects code inside wait(s) and signal(s)

✘ Waiting threads wastes time busy-waiting

✘ Doesn’t support queue of blocked threads
waiting on the semaphore

✘ Users can’t disable interrupts

✘ Can interfere with timer, which might be
needed by other applications

✘ Doesn’t work on multiprocessors
4 Fall 2001, Lecture 12

Implementing Semaphores
(cont.)

n Implementing semaphores (not fully)
using a test&set instruction:

wait (s): signal (s):

while (test&set(lk)!=0) while (test&set(lk)!=0)
do nothing; do nothing;

while (s ≤ 0) s = s + 1
do nothing;

s = s – 1
lk = 0 lk = 0

n Operation:

● Lock “lk” has an initial value of 0

● If “lk” is free (lk=0), test&set atomically:
n reads 0, sets value to 1, and returns 0

n loop test fails, meaning lock is now busy

● If “lk” is busy (lk=1), test&set atomically:
n reads 1, sets value to 1, and returns 1

n loop test is true, so loop continues until
someone releases the lock

5 Fall 2001, Lecture 12

Implementing Semaphores
(cont.)

n Test&set is an example of an atomic
read-modify-write (RMW) instruction

● RMW instructions atomically read a value
from memory, modify it, and write the new
value to memory
n Test&set — on most CPUs
n Exchange — Intel x86 — swaps values

between register and memory

n Compare&swap — Motorola 68xxx —
read value, if value matches value in
register r1, exchange register r1 and value

n Evaluation:

✔ Can be made to work, even on
multiprocessors (although there may be
some cache consistency problems)

✘ Waiting threads wastes time busy-waiting

✘ Doesn’t support queue of blocked threads
waiting on the semaphore

6 Fall 2001, Lecture 12

Semaphores in Nachos

n The class Semaphore is defined in
threads/synch.h and synch.cc

● The classes Lock and Condition are also
defined , but their member functions are
empty (implementation left as exercise)

n Interesting functions:

● Semaphores:
n Semaphore::Semaphore() — creates a

semaphore with specified name & value

n Semaphore::P() — semaphore wait

n Semaphore::V() — semaphore signal

● Locks:
n Lock::Acquire()

n Lock::Release()

● Condition variables:
n Condition::Wait()

n Condition::Signal()

7 Fall 2001, Lecture 12

Semaphores in Nachos

void
Semaphore::P()
{
 IntStatus oldLevel = interrupt->

SetLevel(IntOff); // disable interrupts

 while (value == 0) { // sema not avail
queue-> // so go to sleep

Append((void *)currentThread);
currentThread->Sleep();

 }

 value--; // semaphore available,
// consume its value

(void) interrupt-> // re-enable interrupts
SetLevel(oldLevel);

}

8 Fall 2001, Lecture 12

Semaphores in Nachos
(cont.)

void
Semaphore::V()
{
 Thread *thread;

 IntStatus oldLevel = interrupt->
SetLevel(IntOff);

 thread = (Thread *)queue->Remove();
 if (thread != NULL) // make thread ready,

// consuming the V immediately
scheduler->ReadyToRun(thread);

 value++;

 (void) interrupt->SetLevel(oldLevel);
}

