
1 Fall 2001, Lecture 18

CPU Scheduling Goals

n CPU scheduler must decide:

● How long a process executes

● In which order processes will execute

n User-oriented scheduling policy goals:

● Minimize average response time (time
from request received until response
starts) while maximizing number of
interactive users receiving adequate
response

● Minimize turnaround time (time from
process start until completion)
n Execution time plus waiting time

● Minimize variance of average response
time
n Predictability is important

n Process should always run in (roughly)
same amount of time regardless of the
load on the system

2 Fall 2001, Lecture 18

CPU Scheduling Goals (cont.)

n System-oriented scheduling policy goals:

● Maximize throughput (number of
processes that complete in unit time)

● Maximize processor utilization
(percentage of time CPU is busy)

n Other (non-performance related) system-
oriented scheduling policy goals:

● Fairness — in the absence of guidance
from the user or the OS, processes
should be treated the same, and no
process should suffer starvation (being
infinitely denied service)
n May have to be less fair in order to

minimize average response time!

● Balance resources — keep all resources
of the system (CPU, memory, disk, I/O)
busy
n Favor processes that will underuse

stressed resources

3 Fall 2001, Lecture 18

FCFS Evaluation

n Non-preemptive

n Response time — slow if there is a large
variance in process execution times

● If one long process is followed by
many short processes, short processes
have to wait a long time

● If one CPU-bound process is followed
many I/O-bound processes, there’s a
“convoy effect”
n Low CPU and I/O device utilization

n Throughput — not emphasized

n Fairness —penalizes short processes
and I/O bound processes

n Starvation — not possible

n Overhead — minimal
4 Fall 2001, Lecture 18

Preemptive vs. Non-Preemptive
Scheduling

n Non-preemptive scheduling — scheduler
executes only when:

● Process is terminated

● Process switches from running to blocked

n Preemptive scheduler — scheduler can
execute at (almost) any time:

● Executes at times above, also when:
n Process is created

n Blocked process becomes ready

n A timer interrupt occurs

● More overhead, but keeps long
processes from monopolizing CPU

● Must not preempt OS kernel while it’s
servicing a system call (e.g., reading a
file) or otherwise in an inconsistent state

✘ Can still leave data shared between user
processes in an inconsistent state

5 Fall 2001, Lecture 18

Round-Robin

n Policy:

● Define a fixed time slice (also called a
time quantum)

● Choose process from head of ready
queue

● Run that process for at most one time
slice, and if it hasn’t completed by then,
add it to the tail of the ready queue

● If that process terminates or blocks
before its time slice is up, choose another
process from the head of the ready
queue, and run that process for at most
one time slice…

n Implement using:

● Hardware timer that interrupts at periodic
intervals

● FIFO ready queue (add to tail, take from
head)

6 Fall 2001, Lecture 18

Round-Robin Example

n Example 1:

n Example 2:

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

24 3 3

0 0 0

P1

0 4 30

average waiting time = (4 + 7 + (10–4)) / 3 = 5.66

P2 P3 P1 P1 P1 P1 P1

7 10 14 18 22 26

Process
(Arrival Order)

Burst Time

Arrival Time

P3 P2 P1

3 3 24

0 0 0

P3 P2

0 3

average waiting time = (0 + 3 + 6) / 3 = 3

P1

30

P1 P1 P1 P1 P1

10 14 18 22 266

7 Fall 2001, Lecture 18

Round-Robin Evaluation

n Preemptive (at end of time slice)

n Response time — good for short
processes

● Long processes may have to wait n*q
time units for another time slice
n n = number of other processes,

q = length of time slice

n Throughput — depends on time slice

● Too small — too many context switches

● Too large — approximates FCFS

n Fairness — penalizes I/O-bound
processes (may not use full time slice)

n Starvation — not possible

n Overhead — low

8 Fall 2001, Lecture 18

Shortest-Job-First (SJF)

n Other names:

● Shortest-Process-Next (SPN)

n Policy:

● Choose the process that has the smallest
next CPU burst, and run that process
non-preemptively (until termination or
blocking)

● In case of a tie, FCFS is used to break
the tie

n Difficulty: determining length of next
CPU burst

● Approximation — predict length, based
on past performance of the process, and
on past predictions

9 Fall 2001, Lecture 18

SJF Example

n SJF Example:

n Same Example, FCFS Schedule:

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

6 8 7

0 0 0

P4

0 3

average waiting time = (0 + 3 + 9 + 16) / 4 = 7

P1 P3 P2

9 16 24

P4

3

0

P4

0 6

average waiting time = (0 + 6 + 14 + 21) / 4 = 10.25

P1 P3P2

14 21 24

10 Fall 2001, Lecture 18

SJF Evaluation

n Non-preemptive

n Response time — good for short
processes

● Long processes may have to wait until a
large number of short processes finish

● Provably optimal — minimizes average
waiting time for a given set of processes

n Throughput — high

n Fairness — penalizes long processes

n Starvation — possible for long processes

n Overhead — can be high (recording and
estimating CPU burst times)

