
1 Fall 2001, Lecture 19

Shortest-Remaining-Time (SRT)

n SRT is a preemptive version of SJF

n Policy:

● Choose the process that has the smallest
next CPU burst, and run that process
preemptively…
n (until termination or blocking, or

n until a process enters the ready queue
(either a new process or a previously
blocked process))

● At that point, choose another process to
run if one has a smaller expected CPU
burst than what is left of the current
process’ CPU burst

2 Fall 2001, Lecture 19

SJF & SRT Example

n SJF Example:

n Same Example, SRT Schedule:

0 5

average waiting time = ((0+(10–1) + (1–1) + (17–2) + (5–3)) / 4 = 6.5

P1

10 17 24

P4P2 P1 P3

Process
(Arrival Order)

Burst Time

Arrival Time

P1 P2 P3

8 4 9

0 1 2

P4

0 8

average waiting time = (0 + (8–1) + (12–3) + (17–2)) / 4 = 7.75

P1 P3P2

12 17 26

P4

5

3

3 Fall 2001, Lecture 19

SRT Evaluation

n Preemptive (at arrival of process into
ready queue)

n Response time — good

● Provably optimal — minimizes average
waiting time for a given set of processes

n Throughput — high

n Fairness — penalizes long processes

● Note that long processes eventually
become short processes

n Starvation — possible for long processes

n Overhead — can be high (recording and
estimating CPU burst times)

4 Fall 2001, Lecture 19

Priority Scheduling

n Policy:

● Associate a priority with each process
n Externally defined, based on importance,

money, politics, etc.

n Internally defined, based on memory
requirements, file requirements, CPU
requirements vs. I/O requirements, etc.

n SJF is priority scheduling, where priority is
inversely proportional to length of next
CPU burst

● Choose the process that has the highest
priority, and run that process either:
n preemptively, or

n non-preemptively

n Evaluation

● Starvation — possible for low-priority
processes
n Can avoid by aging processes: increase

priority as they spend time in the system

5 Fall 2001, Lecture 19

Multilevel Queue Scheduling

n Policy:

● Use several ready queues, and associate
a different priority with each queue

● Choose the process from the occupied
queue that has the highest priority, and
run that process either:
n preemptively, or

n non-preemptively

● Assign new processes permanently to a
particular queue
n Foreground, background

n System, interactive, editing, computing

● Each queue can have a different
scheduling policy
n Example: preemptive, using timer

– 80% of CPU time to foreground, using RR

– 20% of CPU time to background, using
FCFS

6 Fall 2001, Lecture 19

Multilevel Feedback Queue Scheduling

n Policy:

● Use several ready queues, and associate
a different priority with each queue

● Choose the process from the occupied
queue with the highest priority, and run
that process either:
n preemptively, or

n non-preemptively

● Each queue can have a different
scheduling policy

● Allow scheduler to move processes
between queues
n Start each process in a high-priority

queue; as it finishes each CPU burst,
move it to a lower-priority queue

n Aging — move older processes to higher-
priority queues

n Feedback = use the past to predict the
future — favor jobs that haven’t used the
CPU much in the past — close to SRT!

7 Fall 2001, Lecture 19

CPU Scheduling in UNIX using
Multilevel Feedback Queue Scheduling

n Policy:

● Multiple queues, each with a priority value
(low value = high priority):
n Kernel processes have negative values

– Includes processes performing system
calls, that just finished their I/O and
haven’t yet returned to user mode

n User processes (doing computation) have
positive values

● Choose the process from the occupied
queue with the highest priority, and run
that process preemptively, using a timer
(time slice typically around 100ms)
n Round-robin scheduling in each queue

● Move processes between queues
n Keep track of clock ticks (60/second)

n Once per second, add clock ticks to
priority value

n Also change priority based on whether or
not process has used more than it’s “fair
share” of CPU time (compared to others)

