Classifying Information
Stored in Memory

m By role in program:
e Program instructions (unchangeable)

e Constants: (unchangeable)
m pi, maxnum, strings used by printf/scanf

e Variables: (changeable)

m Locals, globals, function parameters,
dynamic storage (from malloc or new)

m Initialized or uninitialized

m By protection status:
¢ Readable and writable: variables
e Read-only: code, constants

¢ Important for sharing data and/or code

m Addresses vs. data:

e Must modify addresses if program is
moved (relocation, garbage collection)

Fall 2001, Lecture 23

Memory Management in a
Uniprogrammed System

address main address main address main
memory memory memory
2400 2400 2400
0Ss os oS
2200 2200 2200
1700
1200
C
A 700
B
0 0 0

m OS gets a fixed segment of memory
(usually highest memory)

m One process executes at atime in a
single memory segment

e Process is always loaded at address O

e Compiler and linker generate physical
addresses

¢ Maximum address = memory size — OS
size

2 Fall 2001, Lecture 23

Classifying Information
Stored in Memory (cont.)

m Binding time (when is space allocated?):

e Static: before program starts running

m Program code, static global variables
(initialized and uninitialized)

e Dynamic: as program runs

m Procedure stack, dynamic storage (space
allocated by malloc or new)

m UNIX view of a process’s memory
(doesn’t consider threads):

max
address

stack stack segment
dynamic storage
(from new, malloc heap
static variables
(uninitialized, bss segment
initialized) data segment
code text segment

address
0

3 Fall 2001, Lecture 23

Segments of a Process

m Process’ memory is divided into logical
segments (text, data, bss, heap, stack)

e Some are read-only, others read-write

e Some are known at compile time, others
grow dynamically as program runs

m Who assigns memory to segments?

o Compiler and assembler generate an
object file (containing code and data
segments) from each source file

e Linker combines all the object files for a
program into a single executable object
file, which is complete and self-sufficient

e Loader (part of OS) loads an executable
object file into memory at location(s)
determined by the operating system

e Program (as it runs) uses new and malloc
to dynamically allocate memory, gets
space on stack during function calls

4 Fall 2001, Lecture 23

Processing a User Program

sourte

Lrogram
compder of ., Somple
wcherrlder e

L

- cbyoct
g N moade
other

obyect

modusas L‘
lrdca
L.

po

—— o oad
module e
seyuiam
Nosary
. oo
anamicaly
oaded
w
Dy N manory :
fancuUson
cyranc Binary

me nun
eng oy $me
")

"o

Fall 2001, Lecture 23

Linking

m Contents of object files:

¢ File header — size and starting address
(in memory) of each segment

e Segments for code and initialized data

e Symbol table (symbols, addresses)

e Patch list (symbols, location)

e Relocation information (symbols, location)
e Debugging information

e For UNIX details, type “man a.out”

m Functions of a linker.
e Combine all files and libraries of a program

Regroup all the segments from each file
together (one big data segment, etc.)

Adjust addresses to match regrouping

Result is an executable program

Fall 2001, Lecture 23

Why is Linking Difficult?

m When assembler assembles a file, it may
find external references — symbols it
doesn’t know about (e.g., printf, scanf)

e Compiler just puts in an address of 0 when
producing the object code

e Compiler records external symbols and
their location (in object file) in a patch list,
and stores that list in the object file

o Linker must resolve those external
references as it links the files together

m Compiler doesn’'t know where program will
go in memory (if multiprogramming,
always 0 for uniprogramming)

e Compiler just assumes program starts at O

e Compiler records relocation information
(location of addresses to be adjusted
later), and stores it in the object file

Fall 2001, Lecture 23

Loading

m The /oader loads the completed program
into memory where it can be executed

e Loads code and initialized data segments
into memory at specified location

e Leaves space for uninitialized data (bss)

e Returns value of start address to
operating system

m Alternatives in loading (next 2 lectures...)

o Absolute loader — loads executable file at
fixed location

e Relocatable loader — loads the program
at an arbitrary memory location specified
by OS (needed for multiprogramming, not
for uniprogramming)

m Assembler and linker assume program will
start at location O

m When program is loaded, loader modifies
all addresses by adding the real start
location to those addresses

Fall 2001, Lecture 23

Running the Program —
Static Memory Allocation

m Compiling, linking, and loading is
sufficient for static memory

o Code, constants, static variables

m In other cases, static allocation is not
sufficient:

¢ Need dynamic storage — programmer
may not know how much memory will be
needed when program runs
m Use malloc or new to get what's
necessary when it's necessary

m For complex data structures (e.g., trees),
allocate space for nodes on demand

e OS doesn’t know in advance which
procedures will be called (would be
wasteful to allocate space for every
variable in every procedure in advance)

¢ OS must be able to handle recursive
procedures

9 Fall 2001, Lecture 23

Running the Program —
Dynamic Memory Allocation

m Dynamic memory requires two
fundamental operations:

¢ Allocate dynamic storage
e Free memory when it's no longer needed

e Methods vary for stack and heap

m Two basic methods of allocation:

e Stack (hierarchical)
m Good when allocation and freeing are
somewhat predictable
m Typically used:
— to pass parameters to procedures

— for allocating space for local variables
inside a procedure

— for tree traversal, expression evaluation,
parsing, etc.

m Use stack operations: push and pop

m Keeps all free space together in a
structured organization

m Simple and efficient, but restricted

10 Fall 2001, Lecture 23

Running the Program —
Dynamic Memory Allocation (cont.)

m Two basic methods of allocation:

e Heap

m Used when allocation and freeing are not
predictable

m Typically used:
— for arbitrary list structures, complex data
organizations, etc.

m Use new or malloc to allocate space, use
delete or free to release space

m System memory consists of allocated
areas and free areas (holes)

m Problem: eventually end up with many
small holes, each too small to be useful
— This is called fragmentation, and it leads to
wasted memory
— Fragmentation wasn't a problem with stack
allocation, since we always add/delete
from top of stack
— Solution goal: reuse the space in the
holes in such a way as to keep the number
of holes small, and their size large
m Compared to stack: more general, less
efficient, more difficult to implement

11 Fall 2001, Lecture 23

