Classifying Information
Stored in Memory

m By role in program:
e Program instructions (unchangeable)

e Constants: (unchangeable)
m pi, maxnum, strings used by printf/scanf

e Variables: (changeable)

m Locals, globals, function parameters,
dynamic storage (from malloc or new)

m Initialized or uninitialized

m By protection status:
¢ Readable and writable: variables
e Read-only: code, constants

¢ Important for sharing data and/or code

m Addresses vs. data:

e Must modify addresses if program is
moved (relocation, garbage collection)
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Memory Management in a
Uniprogrammed System
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m OS gets a fixed segment of memory
(usually highest memory)

m One process executes at atime in a
single memory segment

e Process is always loaded at address O

e Compiler and linker generate physical
addresses

¢ Maximum address = memory size — OS
size

2 Fall 2001, Lecture 23

Classifying Information
Stored in Memory (cont.)

m Binding time (when is space allocated?):

e Static: before program starts running

m Program code, static global variables
(initialized and uninitialized)

e Dynamic: as program runs

m Procedure stack, dynamic storage (space
allocated by malloc or new)

m UNIX view of a process’s memory
(doesn’t consider threads):

max
address

stack stack segment
dynamic storage
(from new, malloc heap
static variables
(uninitialized, bss segment
initialized) data segment
code text segment

address
0
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Segments of a Process

m Process’ memory is divided into logical
segments (text, data, bss, heap, stack)

e Some are read-only, others read-write

e Some are known at compile time, others
grow dynamically as program runs

m Who assigns memory to segments?

o Compiler and assembler generate an
object file (containing code and data
segments) from each source file

e Linker combines all the object files for a
program into a single executable object
file, which is complete and self-sufficient

e Loader (part of OS) loads an executable
object file into memory at location(s)
determined by the operating system

e Program (as it runs) uses new and malloc
to dynamically allocate memory, gets
space on stack during function calls
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Processing a User Program
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Linking

m Contents of object files:

¢ File header — size and starting address
(in memory) of each segment

e Segments for code and initialized data

e Symbol table (symbols, addresses)

e Patch list (symbols, location)

e Relocation information (symbols, location)
e Debugging information

e For UNIX details, type “man a.out”

m Functions of a linker.
e Combine all files and libraries of a program

Regroup all the segments from each file
together (one big data segment, etc.)

Adjust addresses to match regrouping

Result is an executable program
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Why is Linking Difficult?

m When assembler assembles a file, it may
find external references — symbols it
doesn’t know about (e.g., printf, scanf)

e Compiler just puts in an address of 0 when
producing the object code

e Compiler records external symbols and
their location (in object file) in a patch list,
and stores that list in the object file

o Linker must resolve those external
references as it links the files together

m Compiler doesn’'t know where program will
go in memory (if multiprogramming,
always 0 for uniprogramming)

e Compiler just assumes program starts at O

e Compiler records relocation information
(location of addresses to be adjusted
later), and stores it in the object file
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Loading

m The /oader loads the completed program
into memory where it can be executed

e Loads code and initialized data segments
into memory at specified location

e Leaves space for uninitialized data (bss)

e Returns value of start address to
operating system

m Alternatives in loading (next 2 lectures...)

o Absolute loader — loads executable file at
fixed location

e Relocatable loader — loads the program
at an arbitrary memory location specified
by OS (needed for multiprogramming, not
for uniprogramming)

m Assembler and linker assume program will
start at location O

m When program is loaded, loader modifies
all addresses by adding the real start
location to those addresses
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Running the Program —
Static Memory Allocation

m Compiling, linking, and loading is
sufficient for static memory

o Code, constants, static variables

m In other cases, static allocation is not
sufficient:

¢ Need dynamic storage — programmer
may not know how much memory will be
needed when program runs
m Use malloc or new to get what's
necessary when it's necessary

m For complex data structures (e.g., trees),
allocate space for nodes on demand

e OS doesn’t know in advance which
procedures will be called (would be
wasteful to allocate space for every
variable in every procedure in advance)

¢ OS must be able to handle recursive
procedures

9 Fall 2001, Lecture 23

Running the Program —
Dynamic Memory Allocation

m Dynamic memory requires two
fundamental operations:

¢ Allocate dynamic storage
e Free memory when it's no longer needed

e Methods vary for stack and heap

m Two basic methods of allocation:

e Stack (hierarchical)
m Good when allocation and freeing are
somewhat predictable
m Typically used:
— to pass parameters to procedures

— for allocating space for local variables
inside a procedure

— for tree traversal, expression evaluation,
parsing, etc.

m Use stack operations: push and pop

m Keeps all free space together in a
structured organization

m Simple and efficient, but restricted
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Running the Program —
Dynamic Memory Allocation (cont.)

m Two basic methods of allocation:

e Heap

m Used when allocation and freeing are not
predictable

m Typically used:
— for arbitrary list structures, complex data
organizations, etc.

m Use new or malloc to allocate space, use
delete or free to release space

m System memory consists of allocated
areas and free areas (holes)

m Problem: eventually end up with many
small holes, each too small to be useful
— This is called fragmentation, and it leads to
wasted memory
— Fragmentation wasn't a problem with stack
allocation, since we always add/delete
from top of stack
— Solution goal: reuse the space in the
holes in such a way as to keep the number
of holes small, and their size large
m Compared to stack: more general, less
efficient, more difficult to implement

11 Fall 2001, Lecture 23




