
1 Fall 2001, Lecture 24

Topics in Memory Management

n Uniprogrammed operating systems

● Assembling, linking, loading

● Static memory allocation

● Dynamic memory allocation
n Stacks, heaps

n Managing the free list, memory
reclamation

n Multiprogrammed operating systems

● Includes most of the above topics

● Static relocation

● Dynamic relocation
n Virtual vs. physical address

n Partitioning (and compaction)
n Segmentation

n Paging

● Swapping

● Demand paging
2 Fall 2001, Lecture 24

Managing the Free List

n Heap-based dynamic memory allocation
techniques typically maintain a free list,
which keeps track of all the holes

n Algorithms to manage the free list:

● Best fit
n Keep linked list of free blocks

n Search the whole list at each allocation

n Choose the hole that comes the closest to
matching the request size

– Any unused space becomes a new
(smaller) hole

n When freeing memory, combine adjacent
holes

n Any way to do this efficiently?

● First fit
n Scan the list for the first hole that is large

enough, choose that hole
n Otherwise, same as best fit

● Which is better? Why??

3 Fall 2001, Lecture 24

Reclaiming Dynamic Memory

n When can memory be freed?

● Whenever programmer says to

● Any way to do so automatically?

n Potential problems in reclamation

● Dangling pointers — have to make sure
that everyone is finished using it

● Memory leak — must not “lose” memory
by forgetting to free it when appropriate

n Implementing automatic reclamation:

● Reference counts
n Used by file systems

n OS keeps track of number of outstanding
pointers to each memory item

n When count goes to zero, free the
memory

4 Fall 2001, Lecture 24

Reclaiming Dynamic Memory
(cont.)

n Implementing automatic reclamation:

● Garbage collection
n Used in LISP for years, now used in Java

n Storage isn’t explicitly freed by a free
operation; programmer just deletes the
pointers and doesn’t worry about what it’s
pointing at

n When OS needs more storage space, it
recursively searches through all the active
pointers and reclaims memory that no one
is using

n Makes life easier for application
programmer, but is difficult to program the
garbage collector

n Often expensive — may use 20% of CPU
time in systems that use it

– May spend as much as 50% of time
allocating and automatically freeing
memory

5 Fall 2001, Lecture 24

Multiprogramming — Goals
in Sharing the Memory Space

n Transparency:

● Multiple processes must coexist in
memory

● No process should be aware that the
memory is shared

● Each process should execute regardless
of where it is located in memory

n Safety:

● Processes must not be able to corrupt
each other, or the OS

● Protection mechanisms are used to
enforce safety

n Efficiency:

● The performance of the CPU and
memory should not degrade very much
as a result of sharing

6 Fall 2001, Lecture 24

Static Relocation

n Put the OS in the highest memory

n Compiler and linker assume each
process starts at address 0

n At load time, the OS:

● Allocates the process a segment of
memory in which it fits completely

● Adjusts the addresses in the processes to
reflect its assigned location in memory

0

2200

2400

1200

A

OS

0

2200

2400

1200

A

OS

B

1900

address main
memory

address main
memory

7 Fall 2001, Lecture 24

Static vs. Dynamic Relocation

n Problems with static relocation:

● Safety — not satisfied — one process
can access / corrupt another’s memory,
can even corrupt OS’s memory

● Processes can not change size (why…?)

● Processes can not move after beginning
to run (why would they want to?)

● Used by MS-DOS, and early versions of
Windows and Mac OS

n An alternative: dynamic relocation

● The basic idea is to change each memory
address dynamically as the process runs

● Translation done by hardware — between
the CPU and the memory is a memory
management unit (MMU) that converts
virtual addresses to physical addresses
n This translation happens for every

memory reference the process makes
8 Fall 2001, Lecture 24

Dynamic Relocation

n There are now two different views of the
address space:

● The physical address space — seen only
by the OS — is as large as there is
physical memory on the machine

● The virtual (logical) address space
—seen by the process — can be as large
as the instruction set architecture allows
n For now, we’ll assume it’s much smaller

than the physical address space

● Multiple processes share the physical
memory, but each can see only its own
virtual address space

n The OS and hardware must now manage
two different addresses:

● Virtual address — seen by the process

● Physical address — address in physical
memory (seen by OS)

