
1 Fall 2001, Lecture 27

Managing Segments
(cont.) (Review)

n To enlarge a segment:

● If space above the segment is free, OS
can just update the segment’s limit and
use some of that space

● Move this segment to a larger free space

● Swap the segment above this one to disk

● Swap this segment to disk, and bring it
back into a larger free space

n Advantages of segmentation:

● Segments don’t have to be contiguous

● Segments can be swapped independently

● Segments allow sharing

n Disadvantages of segmentation:

● Complex memory allocation (first-fit, etc.)

● External fragmentation

2 Fall 2001, Lecture 27

Paging

n Compared to segmentation, paging:

● Makes allocation and swapping easier

● No external fragmentation

n Each process is divided into a number of
small, fixed-size partitions called pages

● Physical memory is divided into a large
number of small, fixed-size partitions
called frames

● Pages have nothing to do with segments

● Page size = frame size
n Usually 512 bytes to 16K bytes

● The whole process is still loaded into
memory, but the pages of a process do
not have to be loaded into a contiguous
set of frames

● Virtual address consists of page number
and offset from beginning of that page

3 Fall 2001, Lecture 27

Implementing Paging

n A page table keeps track of every page
in a particular process

● Each entry contains the corresponding
frame in main (physical) memory

● Can add protection bits, but not as useful

n Additional hardware support required is
slightly less than for segmentation

● No need to keep track of, and compare
to, limit. Why not?

virtual address

page offset

page table

frame

page

physical address

frame offset
access
physical
memory

4 Fall 2001, Lecture 27

Paging Example

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

fifteen available frames

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process A (4 pages)

A.0
A.1
A.2
A.3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process B (3 pages)

A.0
A.1
A.2
A.3
B.0
B.1
B.2

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process C (4 pages)

A.0
A.1
A.2
A.3
B.0
B.1
B.2
C.0
C.1
C.2
C.3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

swap B out (blocked)

A.0
A.1
A.2
A.3

C.0
C.1
C.2
C.3

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

frame
number

main
memory

load process D (5 pages)

A.0
A.1
A.2
A.3

C.0
C.1
C.2
C.3

D.0
D.1
D.2

D.3
D.4

0
1
2
3

0
1
2
3

page table
for Process A

0
1
2

page table
for Process B

7
8
9

10

0
1
2
3

page table
for Process C

4
5
6

0
1
2

page table
for Process D

13
14

list of
free frames

113
124

5 Fall 2001, Lecture 27

Paging Example
(cont.)

program D process D

page 0

page 1

page 2

page 3

page 4

1501

4292 bytes
long 828 bytes

unused

5120 bytes
long

0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

relative address within program:
1501

0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

virtual address:
page# = 1, offset = 478

478

0 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

virtual address:
page# = 1, offset = 478

4
5
6

page table
for Process D

11
12

0
1
2
3
4

0 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0

physical address:
frame# = 5, offset = 478

6 Fall 2001, Lecture 27

Managing Pages and Frames

n OS usually keeps track of free frames in
memory using a bit map

● A bit map is just an array of bits
n 1 means the frame is free

n 0 means the frame is allocated to a page

● To find a free frame, look for the first 1 bit
in the bit map
n Most modern instruction sets have an

instruction that returns the offset of the
first 1 bit in a register

n Page table base pointer (special register)
points to page table of active process

● Saved/restored as part of context switch

● Page table also contains:
n Other bits for demand paging (discussed

next time)

7 Fall 2001, Lecture 27

Evaluation of Paging

n Advantages:

● Easy to allocate memory — keep a list of
available frames, and simple grab first
one that’s free

● Easy to swap — pages, frames, and often
disk blocks as well, all are same size

● One frame is just as good as another!

n Disadvantages:

● Page tables are fairly large
n Most page tables are too big to fit in

registers, so they must live in physical
memory

n This table lookup adds an extra memory
reference for every address translation

● Internal fragmentation
n Always get a whole page, even for 1 byte

n Larger pages makes the problem worse

n Average = 1/2 page per process

8 Fall 2001, Lecture 27

Address Translation, Revisited

n A modern microprocessor and OS has
maybe a 32 bit virtual address space per
process (232 = 4 GB)

● If page size is 4k (212), 32–12=20,
meaning each page table could have up
to 220 (approximately 1 million) page
entries, each maybe 4 bytes long = 4MB

● Problem: page table is too large to store
in one page, can’t store contiguously
n Two-level page tables: page tables are

also stored in virtual memory

● New problem: memory access time may
double since the page tables are now
subject to paging
n (one access to get info from page table,

plus one access to get data from memory)

n New solution: use a special cache (called
a Translation Lookaside Buffer (TLB)) to
cache page table entries

9 Fall 2001, Lecture 27

Two-Level Page Table

10 Fall 2001, Lecture 27

Translation Look-Aside Buffer

11 Fall 2001, Lecture 27

Paging and Segmentation

n Use two levels of mapping:

● Process is divided into variable-size
segments
n Segments are logical divisions as before

● Each segment is divided into many small
fixed-size pages
n Pages are easy for OS to manage

n Eliminates external fragmentation

● Virtual address = segment, page, offset

● One segment table per process, one
page table per segment

n Sharing at two levels: segment, page

● Share frame by having same frame
reference in two page tables

● Share segment by having same base in
two segment tables

● Still need protection bits (sharing, r/o, r/w)

