
1 Fall 2001, Lecture 29

Page Replacement
(Review)

n When the OS needs a frame to allocate
to a process, and all frames are busy, it
must evict (copy to backing store) a page
from its frame to make room in memory

● Reduce overhead by having CPU set a
modified / dirty bit to indicate that a page
has been modified
n Only copy data back to disk for dirty pages

n For non-dirty pages, just update the page
table to refer to copy on disk

n Which page to we choose to replace?
Some page replacement policies:

● Random
n Pick any page to evict

● FIFO
n Evict the page that has been in memory

the longest (use a queue to keep track)

n Idea is to give all pages “fair” (equal) use
of memory

2 Fall 2001, Lecture 29

Page Replacement

3 Fall 2001, Lecture 29

Page Replacement Policy

n When OS needs a frame to use, and all
are busy, which page does it evict?

● Random
n Pick any page to evict

● FIFO
n Evict the page that has been in memory

the longest (use a queue to keep track)

● Optimal (Minimal)
n Evict the page that will be referenced the

farthest into the future
– Requires knowledge of future

n Cannot really be implemented
– Useful for evaluating other policies

● Least-Recently-Used (LRU)
n Use the past to predict the future

n Evict the page that has been unreferenced
for the longest period of time

4 Fall 2001, Lecture 29

Page Reference Example

n Assumptions: 4 pages, 3 frames
Page references: ABCABDADBCB

frame 1
frame 2
frame 3

A B C A B D A D B C BFIFO

frame 1
frame 2
frame 3

A B C A B D A D B C BOptimal

frame 1
frame 2
frame 3

A B C A B D A D B C BLRU

5 Fall 2001, Lecture 29

Implementing LRU

n A perfect implementation would be
something like this:

● Associate a clock register with every
page in physical memory

● Update the clock value at every access

● During replacement, scan through all the
pages and find the one with the lowest
value in its clock register

● What’s wrong with all this?

n Simple approximations:

● FIFO

● Not-recently-used (NRU)
n Use an R (reference) bit, and set it

whenever a page is referenced
n Clear the R bit periodically, such as every

clock interrupt

n Choose any page with a clear R bit to
evict

6 Fall 2001, Lecture 29

Implementing LRU (cont.)

n Clock / Second Chance Algorithm

● Use an R (reference) bit as before

● On a page fault, circle around the “clock”
of all pages in the user memory pool
n Start after the page examined last time

n If the R bit for the page is set, clear it

n If the R bit for the page is clear, replace
that page and set the bit

● Questions:
n Can it loop forever?
n What does it mean if the “hand” is moving

slowly? …if the hand is moving quickly?

n Least Frequently Used (LFU) / N-th
Chance Algorithm

● Don’t evict a page until hand has swept
by N times

● Use an R bit and a counter

● How is N chosen? Large or small?

7 Fall 2001, Lecture 29

Frame Allocation

n How many frames does each process
get (M frames, N processes)?

● At least 2 frames (one for instruction, one
for memory operand), maybe more…

● Maximum is number in physical memory

n Allocation algorithms:

● Equal allocation
n Each gets M / N frames

● Proportional allocation
n Number depends on size and priority

n Which pool of frames is used for
replacement?

● Local replacement
n Process can only reuse its own frames

● Global replacement
n Process can reuse any frame (even if

used by another process)
8 Fall 2001, Lecture 29

Thrashing

n Consider what happens when memory
gets overcommitted:

● After each process runs, before it gets a
chance to run again, all of its pages may
get paged out

● The next time that process runs, the OS
will spend a lot of time page faulting, and
bringing the pages back in
n All the time it’s spending on paging is time

that it’s not getting useful work done
n With demand paging, we wanted a very

large virtual memory that would be as fast
as physical memory, but instead we’re
getting one that’s as slow as the disk!

n This wasted activity due to frequent
paging is called thrashing

● Analogy — student taking too many
courses, with too much work due

9 Fall 2001, Lecture 29

Working Sets

n Thrashing occurs when the sum of all
processes’ requirement is greater than
physical memory

n Solution — use local page frame
replacement, don’t let processes compete

– Doesn’t help, as an individual process can
still thrash

n Solution — only give a process the
number of frames that it “needs”

– Change number of frames allocated to
each process over time

– If total need is too high, pick a process and
suspend it

n Working set (Denning, 1968) — the
collection of pages that a process is
working with, and which must be resident
in main memory, to avoid thrashing

● Always keep working set in memory

● Other pages can be discarded as
necessary

