UNIX File System
(Review)
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Diagram from Advanced Programming in the UNIX Environment, W. Richard Stevens,
Addison Wesley, 1992.
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Working with Directories in UNIX

(Think about how this compares to Windows
or to the Macintosh OS)

m UNIX keeps track of the inode number of
current working directory for each
process; directory searches begin there

m However, a file can also be specified as
the full pathname from the “root”

o If filename begins with “ /7, start at root of
the file system tree (inode 2)

m Other characters have special meaning:

o If filename begins with “ ~ ", start at the
user’'s home directory

o If filename begins with “ . ”, start at the
current working directory

o If filename begins with “ .. ”, start at the
parent directory
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Working with Directories (Lookup)

Block 132 |-node 26 Block 406
I-node 6 is fusr is for is /usr/ast
Root directory is for /usr directory Jusr/ast directory
1 hd mode 6| mode 26|
1 §ize 1] oo size 6| o0
2 | bin times 19 | dick times 54 | grants
7 | dev 132 30| erik 406 92 | books
14 lib 51| jim 60 | mbox
9 etc 26| ast 81 | minix
6 usr 45| bal 17 | src
8 e I-node 6 I-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields Jusr is in is i-node fustfast is in is i-node
i-node 6 block 132 26 block 406 60

Fig. 4-16. The steps in looking up /usr/astimbox.

m A directory is a table of entries:
e 2 bytes — inumber

e 14 bytes — file name (improved in BSD
4.2 and later)

m Search to find the file begins with either
root, or the current working directory

¢ Inode 2 points to the root directory (“/7)

¢ Example above shows lookup of
/usr/ast/mbox

3 Fall 2001, Lecture 32

Working with Directories (Links)
in UNIX

m UNIX supports “links” — two directories
containing the same file

e Think of “shortcuts” in Windows, or
“aliases” in the Macintosh OS

m Hard links (“ In target _file directory ™)

e Specified directory refers to the target file
m Both directories point to same inode

m Soft / symbolic links
(“ In —s target file directory”)

¢ Adds a pointer to the target file (or target
directory) from the specified directory

m Special bit is set in inode, and the file just
contains the name of the file it's linked to

m View symbolic links with “Is —F” and “Is —I”

e Can link across disk drives

e Similar to linking in Windows / Mac OS

4 Fall 2001, Lecture 32




Organization of Files
(Contiguous Allocation)
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FIGURE 11.7 Contiguous file allocation

File Allocation Table

f File Name  Start Block Length ]
FileA 2 3
FileB 9 5
FileC 18 8
FileD 30 2
FileE 26 3

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks

¢ Allocates contiguous groups of blocks

when it creates a file

e File descriptor must store start block and

length of file

m Used in IBM 370, some write-only disks
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Organization of Files
(Linked / Chained Allocation)

File Allocation Table
File Name  Start Block

Length ,

FileB 1 5

o[ Ju Jwe[ ] dE g
s Y[ Jwr[ Jws[ ]
20 Ja[ ]2 Ja3[ J2a[ ]
25 J26 ]2z J28[FF] 20 |

FIGURE 11.9 Chained allocation

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks
o File descriptor stores pointer to first block

e Each block stores pointer to next block

m Used in DEC TOPS-10, Xerox Alto
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Organization of Files (Compaction for
Contiguous and Linked Allocation)

FileA

o] 1EE - -l -l
-
WED u T 12 13- 1
15-16-17-18-19%)
i uJ2Jajal]

5[ |26 |27 J28[ J2o[ ]
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FIGURE 11.8 Contiguous file allocation (after compaction)
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File Name  Start Block Length 1
FileA 0 3
FileB 3 5
FileC 8 8
FileD 19 2
FileE 16 3
File Allocation Table
File Name  Start Block Length
FileB 0 5

FIGURE 11.10 Chained allocation (after consolidation)

Diagrams from Operating Systems, William Stallings, Prentice Hall, 1995.
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Organization of Files
(Indexed Allocation)

File Allocation Table
r File Name Index Block

FileB 24
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FIGURE 11.11 Indexed allocation with block portions

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps a list of free blocks

e OS allocates an array (called the index
block) to hold pointers to all the blocks
used by the file

¢ Allocates blocks only on demand

o File descriptor points to this array

m Used in DEC VMS, Nachos
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Organization of Files
(Multilevel Indexed Allocation)

m Used in UNIX (numbers below are for
traditional UNIX, BSD UNIX 4.1)

m Each inode (file descriptor) contains 13
block pointers

e First 10 pointers point to data blocks
(each 512 bytes long) of a file

m If the file is bigger than 10 blocks (5,120
bytes), the 11th pointer points to a single
indirect block, which contains 128 pointers
to 128 more data blocks (can support files
up to 70,656 bytes)

— If the file is bigger than that, the 12th
pointer points to a double indirect block,
which contains 128 pointers to 128 more
single indirect blocks (can support files up
to 8,459,264 bytes)

» If the file is bigger than that, the 13th
pointer points to a triple indirect block,
which contains 128 pointers to 128
more double indirect blocks

e Max file size is 1,082,201,087 bytes
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Organization of Files
(Multilevel Indexed Allocation) (cont.)
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Diagram from Modern Operating Systems, Andrew Tanenbaum, Prentice Hall, 1992.

m BSD UNIX 4.2, 4.3:
¢ Maximum block size is 4096 bytes

¢ Inode contains 14 block pointers
m 12 to data

m 13 to single indirect block containing 1024
pointers, 14 to double indirect block...

o Max file size is 232 bytes
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