UNIX File System
(Review)

m High-level view:
disk drive

‘ partition ‘ partition ‘

4 -
, -
’

bkl)c())(?lfs ‘ Sblfggli_ ilist ‘ directory blocks and file data blocks ‘

‘ inode ‘ inode ‘ inode ‘ inode ‘ inode ‘

m Low-level view:

directory blocks and data blocks ~ ——————————— =

Diagram from Advanced Programming in the UNIX Environment, W. Richard Stevens,
Addison Wesley, 1992.

Fall 2001, Lecture 32

Working with Directories in UNIX

(Think about how this compares to Windows
or to the Macintosh OS)

m UNIX keeps track of the inode number of
current working directory for each
process; directory searches begin there

m However, a file can also be specified as
the full pathname from the “root”

o If filename begins with “ /7, start at root of
the file system tree (inode 2)

m Other characters have special meaning:

o If filename begins with “ ~ ", start at the
user’'s home directory

o If filename begins with “ . ”, start at the
current working directory

o If filename begins with “ .. ”, start at the
parent directory

Fall 2001, Lecture 32

Working with Directories (Lookup)

Block 132 |-node 26 Block 406
I-node 6 is fusr is for is /usr/ast
Root directory is for /usr directory Jusr/ast directory
1 hd mode 6| mode 26|
1 §ize 1] oo size 6| o0
2 | bin times 19 | dick times 54 | grants
7 | dev 132 30| erik 406 92 | books
14 lib 51| jim 60 | mbox
9 etc 26| ast 81 | minix
6 usr 45| bal 17 | src
8 e I-node 6 I-node 26
Looking up says that /usr/ast says that /usr/ast/mbox
usr yields Jusr is in is i-node fustfast is in is i-node
i-node 6 block 132 26 block 406 60

Fig. 4-16. The steps in looking up /usr/astimbox.

m A directory is a table of entries:
e 2 bytes — inumber

e 14 bytes — file name (improved in BSD
4.2 and later)

m Search to find the file begins with either
root, or the current working directory

¢ Inode 2 points to the root directory (“/7)

¢ Example above shows lookup of
/usr/ast/mbox

3 Fall 2001, Lecture 32

Working with Directories (Links)
in UNIX

m UNIX supports “links” — two directories
containing the same file

e Think of “shortcuts” in Windows, or
“aliases” in the Macintosh OS

m Hard links (“ In target _file directory ™)

e Specified directory refers to the target file
m Both directories point to same inode

m Soft / symbolic links
(“ In —s target file directory”)

¢ Adds a pointer to the target file (or target
directory) from the specified directory

m Special bit is set in inode, and the file just
contains the name of the file it's linked to

m View symbolic links with “Is —F” and “Is —I”

e Can link across disk drives

e Similar to linking in Windows / Mac OS

4 Fall 2001, Lecture 32

Organization of Files
(Contiguous Allocation)

i

FileA
o] 11 2 s[ET 4[]
sC 16l 17781 oM
i B | 121:“.EB i1 RO
1 Jw[[] w[L]
ZDEEZIZZF%1§23MZ4-

FileE
Hewf] El El Elas

FileD
Y E e w E

FIGURE 11.7 Contiguous file allocation

File Allocation Table

f File Name Start Block Length]
FileA 2 3
FileB 9 5
FileC 18 8
FileD 30 2
FileE 26 3

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks

¢ Allocates contiguous groups of blocks

when it creates a file

e File descriptor must store start block and

length of file

m Used in IBM 370, some write-only disks

Fall 2001, Lecture 32

Organization of Files
(Linked / Chained Allocation)

File Allocation Table
File Name Start Block

Length ,

FileB 1 5

o[Ju Jwe[] dE g
s Y[Jwr[Jws[]
20 Ja[]2 Ja3[J2a[]
25 J26]2z J28[FF] 20 |

FIGURE 11.9 Chained allocation

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps an ordered list of free blocks
o File descriptor stores pointer to first block

e Each block stores pointer to next block

m Used in DEC TOPS-10, Xerox Alto

Fall 2001, Lecture 32

7

Organization of Files (Compaction for
Contiguous and Linked Allocation)

FileA

o] 1EE - -l -l
-
WED u T 12 13- 1
15-16-17-18-19%)
i uJ2Jajal]

5[|26 |27 J28[J2o[]

File Allocation Table

FIGURE 11.8 Contiguous file allocation (after compaction)

s o] 7] 8] o[
w[_ Ju_Ju[][][]
15 J1e[17 Js[_Jo[]
20 |2 J22[][Ja[|
25 J26 |27 |28 129 |

File Name Start Block Length 1
FileA 0 3
FileB 3 5
FileC 8 8
FileD 19 2
FileE 16 3
File Allocation Table
File Name Start Block Length
FileB 0 5

FIGURE 11.10 Chained allocation (after consolidation)

Diagrams from Operating Systems, William Stallings, Prentice Hall, 1995.

Fall 2001, Lecture 32

8

Organization of Files
(Indexed Allocation)

File Allocation Table
r File Name Index Block

FileB 24

0 Ja[_J22f J23[]2 EE i
5[J26[|27 28R 200]| .

so_Ja1[_)32 Ja[]3]

FIGURE 11.11 Indexed allocation with block portions

Diagram from Operating Systems, William Stallings, Prentice Hall, 1995.

m OS keeps a list of free blocks

e OS allocates an array (called the index
block) to hold pointers to all the blocks
used by the file

¢ Allocates blocks only on demand

o File descriptor points to this array

m Used in DEC VMS, Nachos

Fall 2001, Lecture 32

Organization of Files
(Multilevel Indexed Allocation)

m Used in UNIX (numbers below are for
traditional UNIX, BSD UNIX 4.1)

m Each inode (file descriptor) contains 13
block pointers

e First 10 pointers point to data blocks
(each 512 bytes long) of a file

m If the file is bigger than 10 blocks (5,120
bytes), the 11th pointer points to a single
indirect block, which contains 128 pointers
to 128 more data blocks (can support files
up to 70,656 bytes)

— If the file is bigger than that, the 12th
pointer points to a double indirect block,
which contains 128 pointers to 128 more
single indirect blocks (can support files up
to 8,459,264 bytes)

» If the file is bigger than that, the 13th
pointer points to a triple indirect block,
which contains 128 pointers to 128
more double indirect blocks

e Max file size is 1,082,201,087 bytes

9 Fall 2001, Lecture 32

Organization of Files
(Multilevel Indexed Allocation) (cont.)

I'node Single

Attributes indirect Double
block indirect block
1
3 / Triple indirect Addresses of
N C data blocks
v ata blocl
>
42 A block o
(8] / /
2 -
bor——o I
—I\ R
—
/'
E— F endll

Diagram from Modern Operating Systems, Andrew Tanenbaum, Prentice Hall, 1992.

m BSD UNIX 4.2, 4.3:
¢ Maximum block size is 4096 bytes

¢ Inode contains 14 block pointers
m 12 to data

m 13 to single indirect block containing 1024
pointers, 14 to double indirect block...

o Max file size is 232 bytes

10 Fall 2001, Lecture 32

