Improving Disk Performance

- Keep some structures in memory
 - Active inodes, file tables
- Efficient free space management
 - Bitmaps
- Careful allocation of disk blocks
 - Contiguous allocation where possible
 - Direct / indirect blocks
 - Good choice of block size
 - Cylinder groups
 - Keep some disk space in reserve
- Disk management
 - Cache of disk blocks
 - Disk scheduling

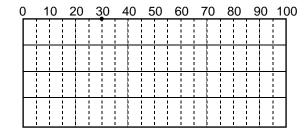
Fall 2001, Lecture 34

Improving Performance with Disk Head Scheduling

- Permute the order of the disk requests
 - From the order that they arrive in
 - Into an order that reduces the distance of seeks
- Examples:
 - Head just moved from lower-numbered track to get to track 30
 - Request queue: 61, 40, 18, 78
- Algorithms:
 - First-come first-served (FCFS)
 - Shortest Seek Time First (SSTF)
 - SCAN (0 to 100, 100 to 0, ...)
 - C-SCAN (0 to 100, 0 to 100, ...)

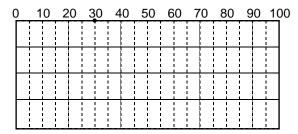
Improving Performance Using a Disk Cache

- Have OS (not hardware) manage a *disk* block cache to improve performance
 - Use part of main memory as a cache
 - When OS reads a file from disk, it copies those blocks into the cache
 - Before OS reads a file from disk, it first checks the cache to see if any of the blocks are there (if so, uses cached copy)
- Replacement policies for the blocks:
 - Same options as paging
 - FIFO, LRU using clock / second chance
 - Easy to implement exact LRU
 - OS just records time along with everything else it has to update when a block is read
 - But sequential access degrades LRU
 - Solution: free-behind policy for large sequentially-accessed files as block is read, remove previous one from cache

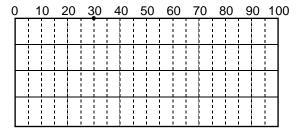

Fall 2001, Lecture 34

Disk Head Scheduling (cont.)

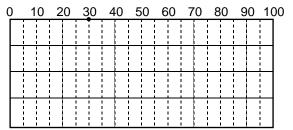
■ FCFS


(used in Nachos)

Handle in order of arrival


■ SSTF

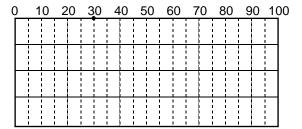
 Select request that requires the smallest seek from current track



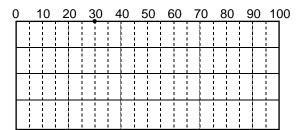
Disk Head Scheduling (cont.)

- SCAN (Elevator algorithm)
 - Move the head 0 to 100, 100 to 0, picking up requests as it goes

- LOOK (variation on SCAN)
 - Don't go to end unless necessary


Fall 2001, Lecture 34

Comparison of Disk Head Scheduling Methods


- SSTF is common and has a natural appeal
- SCAN and C-SCAN perform better for systems that place a heavy load on the disk
- Performance depends on the number and types of requests
- Requests for disk service can be influenced by the file-allocation method.
- The disk-scheduling algorithm should be written as a separate module of the operating system, allowing it to be replaced as necessary
- Either SSTF or LOOK is a reasonable choice for the default algorithm

Disk Head Scheduling (cont.)

- C-SCAN (Circular SCAN)
 - Move the head 0 to 100, picking up requests as it goes, then big seek to 0

- C-LOOK (variation on C-SCAN)
 - Don't go to end unless necessary

Fall 2001, Lecture 34

Disk Management

- Disk formatting
 - Physical formatting dividing disk into sectors: header, data area, trailer
 - Most disks are preformatted, although special utilities can reformat them
 - After formatting, must partition the disk, then write the data structures for the file system (logical formatting)
- Boot block contains the "bootstrap" program for the computer
 - System also contains a ROM with a bootstrap loader that loads this program
- Disk system should ignore bad blocks
 - When disk is formatted, a scan detects bad blocks and tells disk system not to assign those blocks to files
 - Disk may also do this as disk is used

7

Fall 2001, Lecture 34

Disk Management (cont.)

- Swap space management
 - Swap space in normal file system
 - Swap space in separate partition
 - One big file don't need whole file system, directories, etc.
 - Only need manager to allocate/deallocate blocks (optimized for speed)

■ Disk reliability

- Data normally assumed to be persistent
- Disk striping data broken into blocks, successive blocks stored on separate drives
- Mirroring keep a "shadow" or "mirror" copy of the entire disk
- Stable storage data is never lost during an update — maintain two physical blocks for each logical block, and both must be same for a write to be successful

9 Fall 2001, Lecture 34