
1 Fall 2001, Lecture 35

Distributed File Systems

n Distributed file system — a distributed
implementation of a file system

● File service — specification of the file
system interface as seen by the clients

● File server — a process running on some
machine which helps implement the file
service by supplying files

n Goals of a distributed file system

● Network transparency
n Provide same operations for accessing

remote and local files

n Ideally, clients should not have to know
the location of files to access them

● Availability / robustness — file service
should be maintained even in the
presence of partial system failures

● Performance — should overcome
bottlenecks of a centralized file system

2 Fall 2001, Lecture 35

Distributed File Systems (cont.)

n In principle, files in a distributed file
system can be stored at any machine

● However, a typical distributed
environment has a few dedicated
machines called file servers that store all
the files

cache cache cache
local
disk

cache cache

server
disk

server
disk

server
disk

network

3 Fall 2001, Lecture 35

Distributed Naming Structures

n Two related concepts in naming:

● Location transparency — the name of the
file does not reveal the physical storage
location (disk)
n May expose name of machine

n True for many naming schemes

● Location independence — the name of
the file need not change if the file’s
storage location changes
n False for most naming schemes

n Absolute names

● Names of form: machine : pathname

● Used by:
n Old UNIX distributed file systems

n Current web browsers (e.g., Netscape)

✔ User can use same tools and file
operations for local and remote access

✘ Not location transparent or independent
4 Fall 2001, Lecture 35

Distributed Naming Structures (cont.)

n Mount remote directories onto local
directories (possibly on demand)

● Client-maintained mount information:
n Used by UNIX and NFS — Sun’s Network

File System

n Client maintains:
– A set of local names for remote locations
– A mount table (/etc/fstab) that specifies a:

» < remote machine name : pathname >
» and < local pathname >

n At boot time, the local name is bound to
the remote name

– Afterwards, users refer to local pathname
as if it were local, and the distributed OS
takes care of the mapping

– Location transparent and independent
after the mount operation, but not before

● Server-maintained mount information:
n If files are moved to a different server,

mount information need only be updated
at servers

5 Fall 2001, Lecture 35

Mounting Remote File Systems

n NFS supports mounting of remote file
systems by client machines

● Name space seen by each client may be
different

● Same file on server may have different
path names on different clients

● NFS does not enforce a single network-
wide name space, but a uniform name
space (and location transparency) can be
established if desired

/ (root)

export

people

bin

robinbill

/ (root)

usr

profsstudents

etc

han

/ (root)

nfs

users

janejim bob

remote

mount

remote

mount

clientserver 1 server 2

6 Fall 2001, Lecture 35

NFS Software Architecture

n Virtual file system:

● Separates generic file-system operations
from their implementation (can have
different types of local file systems)

● Based on a file descriptor called a vnode
that is unique networkwide (UNIX inodes
are only unique on a single file system)

local
disk

UNIX
file

system

NFS
client

virtual file system

local remote

UNIX kernel

user-level
client process

system calls

client computer

local
disk

UNIX
file

system

NFS
server

virtual file system

UNIX kernel

server computer
network

NFS
protocol

7 Fall 2001, Lecture 35

NFS Protocol

n NFS protocol provides a set of RPCs for
remote file operations

● Looking up a file within a directory

● Manipulating links and directories

● Creating, renaming, and removing files

● Getting and setting file attributes

● Reading and writing files

n NFS is stateless

● Servers do not maintain information about
their clients from one access to the next
n There are no open-file tables on the server

● There are no open and close operations
n Each request must provide a unique file

identifier, and an offset within the file

● Easy to recover from a crash, but file
operations must be idempotent

8 Fall 2001, Lecture 35

NFS Protocol (cont.)

n Because NFS is stateless, all modified
data must be written to the server’s disk
before results are returned to the client

● Server crash and recovery should be
invisible to client —data should be intact

✘ Lose benefits of caching
n Solution — RAM disks with battery backup

(un-interruptable power supply), written to
disk periodically

n A single NFS write is guaranteed to be
atomic, and not intermixed with other
writes to the same file

● However, NFS does not provide
concurrency control
n A write system call may be decomposed

into several NFS writes, which may be
interleaved

n Since NFS is stateless, this is not
considered to be an NFS problem

