Distributed File Systems

m Distributed file system — a distributed
implementation of a file system

e File service — specification of the file
system interface as seen by the clients

e File server — a process running on some
machine which helps implement the file
service by supplying files

m Goals of a distributed file system

e Network transparency

m Provide same operations for accessing
remote and local files

m Ideally, clients should not have to know
the location of files to access them

o Availability | robustness — file service
should be maintained even in the
presence of partial system failures

e Performance — should overcome
bottlenecks of a centralized file system
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Distributed File Systems (cont.)
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m In principle, files in a distributed file
system can be stored at any machine

e However, a typical distributed
environment has a few dedicated
machines called file servers that store all
the files
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Distributed Naming Structures

m Two related concepts in naming:

e Location transparency — the name of the
file does not reveal the physical storage
location (disk)

m May expose name of machine
m True for many naming schemes

e Location independence — the name of
the file need not change if the file’s
storage location changes

m False for most naming schemes

m Absolute names
e Names of form: machine : pathname

e Used by:
m Old UNIX distributed file systems
m Current web browsers (e.g., Netscape)

[0 User can use same tools and file
operations for local and remote access

] Not location transparent or independent
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Distributed Naming Structures (cont.)

m Mount remote directories onto local
directories (possibly on demand)

o Client-maintained mount information:
m Used by UNIX and NFS — Sun’s Network
File System
m Client maintains:
— A set of local names for remote locations
— A mount table (/etc/fstab) that specifies a:
» < remote machine name : pathname >
» and < local pathname >
m At boot time, the local name is bound to
the remote name

— Afterwards, users refer to local pathname
as if it were local, and the distributed OS
takes care of the mapping

— Location transparent and independent
after the mount operation, but not before
¢ Server-maintained mount information:

m If files are moved to a different server,
mount information need only be updated
at servers
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Mounting Remote File Systems

NFS Software Architecture
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m NFS supports mounting of remote file
systems by client machines

e Name space seen by each client may be
different

e Same file on server may have different
path names on different clients

¢ NFS does not enforce a single network-
wide name space, but a uniform name
space (and location transparency) can be
established if desired
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m Virtual file system:

¢ Separates generic file-system operations
from their implementation (can have
different types of local file systems)

e Based on a file descriptor called a vnode
that is unique networkwide (UNIX inodes
are only unique on a single file system)
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NFS Protocol

m NFS protocol provides a set of RPCs for
remote file operations

e Looking up a file within a directory

e Manipulating links and directories

¢ Creating, renaming, and removing files
e Getting and setting file attributes

¢ Reading and writing files

m NFS is stateless

e Servers do not maintain information about
their clients from one access to the next

m There are no open-file tables on the server

e There are no open and close operations

m Each request must provide a unique file
identifier, and an offset within the file

e Easy to recover from a crash, but file
operations must be idempotent
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NFS Protocol (cont.)

m Because NFS is stateless, all modified
data must be written to the server’s disk
before results are returned to the client

e Server crash and recovery should be
invisible to client —data should be intact

[] Lose benefits of caching

m Solution — RAM disks with battery backup
(un-interruptable power supply), written to
disk periodically

m A single NFS write is guaranteed to be
atomic, and not intermixed with other
writes to the same file

e However, NFS does not provide
concurrency control
m A write system call may be decomposed

into several NFS writes, which may be
interleaved

m Since NFS is stateless, this is not
considered to be an NFS problem
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