Distributed File Systems

m Distributed file system — a distributed
implementation of a file system

e File service — specification of the file
system interface as seen by the clients

e File server — a process running on some
machine which helps implement the file
service by supplying files

m Goals of a distributed file system

e Network transparency

m Provide same operations for accessing
remote and local files

m Ideally, clients should not have to know
the location of files to access them

o Availability | robustness — file service
should be maintained even in the
presence of partial system failures

e Performance — should overcome
bottlenecks of a centralized file system

Fall 2001, Lecture 35

Distributed File Systems (cont.)

>
oca

| |

cache cache

alllb Nk > N ala

server| [servel [serve
disk | | disk | | disk

m In principle, files in a distributed file
system can be stored at any machine

e However, a typical distributed
environment has a few dedicated
machines called file servers that store all
the files

Fall 2001, Lecture 35

Distributed Naming Structures

m Two related concepts in naming:

e Location transparency — the name of the
file does not reveal the physical storage
location (disk)

m May expose name of machine
m True for many naming schemes

e Location independence — the name of
the file need not change if the file’s
storage location changes

m False for most naming schemes

m Absolute names
e Names of form: machine : pathname

e Used by:
m Old UNIX distributed file systems
m Current web browsers (e.g., Netscape)

[0 User can use same tools and file
operations for local and remote access

] Not location transparent or independent

Fall 2001, Lecture 35

Distributed Naming Structures (cont.)

m Mount remote directories onto local
directories (possibly on demand)

o Client-maintained mount information:
m Used by UNIX and NFS — Sun’s Network
File System
m Client maintains:
— A set of local names for remote locations
— A mount table (/etc/fstab) that specifies a:
» < remote machine name : pathname >
» and < local pathname >
m At boot time, the local name is bound to
the remote name

— Afterwards, users refer to local pathname
as if it were local, and the distributed OS
takes care of the mapping

— Location transparent and independent
after the mount operation, but not before
¢ Server-maintained mount information:

m If files are moved to a different server,
mount information need only be updated
at servers

Fall 2001, Lecture 35

Mounting Remote File Systems

NFS Software Architecture

/ (root) / (root) / (root)
export etc usr bin nfs

/ e /o

user-level
client process

l system calls

mount @
bill robin han jim jane bob
server 1 client server 2

m NFS supports mounting of remote file
systems by client machines

e Name space seen by each client may be
different

e Same file on server may have different
path names on different clients

¢ NFS does not enforce a single network-
wide name space, but a uniform name
space (and location transparency) can be
established if desired

Fall 2001, Lecture 35

UNIX kernel UNIX kernel

virtual file system virtual file system

local remote
NFS

Ufz\luex NFS protocol NFS Ufz\lltlax
system client server system

local local

disk disk

client computer @ server computer

m Virtual file system:

¢ Separates generic file-system operations
from their implementation (can have
different types of local file systems)

e Based on a file descriptor called a vnode
that is unique networkwide (UNIX inodes
are only unique on a single file system)

Fall 2001, Lecture 35

NFS Protocol

m NFS protocol provides a set of RPCs for
remote file operations

e Looking up a file within a directory

e Manipulating links and directories

¢ Creating, renaming, and removing files
e Getting and setting file attributes

¢ Reading and writing files

m NFS is stateless

e Servers do not maintain information about
their clients from one access to the next

m There are no open-file tables on the server

e There are no open and close operations

m Each request must provide a unique file
identifier, and an offset within the file

e Easy to recover from a crash, but file
operations must be idempotent

Fall 2001, Lecture 35

NFS Protocol (cont.)

m Because NFS is stateless, all modified
data must be written to the server’s disk
before results are returned to the client

e Server crash and recovery should be
invisible to client —data should be intact

[] Lose benefits of caching

m Solution — RAM disks with battery backup
(un-interruptable power supply), written to
disk periodically

m A single NFS write is guaranteed to be
atomic, and not intermixed with other
writes to the same file

e However, NFS does not provide
concurrency control
m A write system call may be decomposed

into several NFS writes, which may be
interleaved

m Since NFS is stateless, this is not
considered to be an NFS problem

Fall 2001, Lecture 35

