
1 Fall 2001, Lecture 36

What is a Distributed System?

n A distributed system is a set of physically
separate processors connected by one
or more communication links

● Workstation = computer = machine =
processor = host = site = node

n Is every system with >2 computers a
distributed system??

● File server, printer server, web server

● Beowulf-style cluster of workstations

● 16-processor Cray SV1 at OSC

● How does a distributed system differ from
a parallel system?

P1 P2 P3

P4 P5

Network

2 Fall 2001, Lecture 36

Two Taxonomies
for Classifying Computer Systems

n Michael Flynn (1966)

● SISD — single instruction, single data

● SIMD — single instruction, multiple data

● MISD — multiple instruction, single data

● MIMD — multiple instruction, multiple data

n More recent (Stallings, 1993)

3 Fall 2001, Lecture 36

Classification of MIMD Architectures

n Tanenbaum
(date?)

n Tightly coupled ≈ parallel processing

● Processors share clock and memory, run
one OS, communicate frequently

n Loosely coupled ≈ distributed computing

● Each processor has its own memory,
runs its own OS (?), communicates
infrequently

MIMD

parallel and
distributed
computers

tightly
coupled

multiprocessors
(shared

memory)

multicomputers
(distributed /

private memory)

loosely
coupled

switchedbus switchedbus

Ultra-
computer

Sequent HypercubeWorkstations
on a LAN

4 Fall 2001, Lecture 36

Distributed Operating System

n Loosely-coupled hardware

● No shared memory, but provides the
“feel” of a single memory

n Tightly-coupled software

● One single OS, or at least the feel of one

n Machines are somewhat, but not
completely, autonomous

P1 P2 P3

P4 P5

Network

M1 M2 M3

M4 M5

Disk1

Disk5Printer4

5 Fall 2001, Lecture 36

Why Use Distributed Systems?
What are the Advantages?

n Natural programming model

● Some applications (database in large
company) are inherently distributed

n Resource sharing

● Expensive (scarce) resources need not
be replicated for each processor

n Price / performance

● Network of workstations provides more
MIPS for less $ than a mainframe does

n Reliability

● Replication of processors and resources
yields fault tolerance

n Scalability

● Modular structure makes it easier to add
or replace processors and resources

6 Fall 2001, Lecture 36

Central Coordinator

n To enter the critical section, a thread
sends a request message to the central
coordinator, and waits for a reply

n When the coordinator receives a request:

● If no other thread is in the critical section,
it sends back a reply message

● If another thread is in the critical section,
the coordinator adds the request to the
tail of its queue, and does not respond

n When the requesting thread receives the
reply message from the coordinator, it
enters the critical section

● When it leaves the critical section, it
sends a release message to coordinator

● When the coordinator receives a release
message, it removes the request from the
head of the queue, and sends a reply
message to that thread

7 Fall 2001, Lecture 36

Central Coordinator
(cont.)

n Evaluation:

● 3 messages required to enter CS
n release, request, reply

✘ Coordinator is a performance bottleneck

✘ Coordinator is a single point of failure

✘ Delay is unconstrained

1 2 3

request queue in CS

Coordinator

request

1

reply

1 2 3

request queue in CS

Coordinator

request

1

1 2 3

request queue in CS

Coordinator

2

release

1 2 3

request queue in CS

Coordinator

2

reply

2

8 Fall 2001, Lecture 36

Lamport’s Algorithm (1978)

n Each process maintains a request
queue, ordered by timestamp value

n Requesting the critical section (CS):

● When a thread wants to enter the CS, it:
n Adds the request to its own request queue

n Sends a timestamped request message
to all threads in that CS’s request set

● When a thread receives a request
message, it:
n Adds the request to its own request queue

n Returns a timestamped reply message

n Executing the CS:

● A thread enters the CS when both:
n Its own request is at the top of its own

request queue (its request is earliest)

n It has received a reply message with a
timestamp larger than its request from all
other threads in the request set

9 Fall 2001, Lecture 36

Lamport’s Algorithm (cont.)

n Releasing the CS:

● When a thread leaves the CS, it:
n Removes its own (satisfied) request from

the top of its own request queue

n Sends a timestamped release message
to all threads in the request set

● When a thread receives a release
message, it:
n Removes the (satisfied) request from its

own request queue
n (Perhaps raising its own message to the

top of the queue, enabling it to finally enter
the CS)

n Evaluation:

● 3(N–1) messages required to enter CS
n (N–1) release, (N–1) request, (N–1) reply

✘ Later…

10 Fall 2001, Lecture 36

Lamport’s Algorithm (cont.)

n Both threads 0 and 2 request the CS:

n Everyone replies, thread 0 enters the CS
since its request was first:

0

1

2

request
8 8

request
request

12

request
12

0

2

0

1

2
reply
14

16
reply

reply
13

reply
17

0

02

2

02

11 Fall 2001, Lecture 36

Lamport’s Algorithm (cont.)

n Thread 0 releases the CS, thread 2
enters it:

0

1

2

release
20 20

release

2

2

2

