What is Linux?

Linux is a modem, free operating system
based on UNIX standards

e First developed as a small but self-
contained kernel in 1991 by Linus
Torvalds

Developed in collaboration by many
users around the world over Internet

Designed to run efficiently and reliably on
common PC hardware, but also runs on
a variety of other platforms (e.g., PDAS)

The core Linux operating system kernel
Is entirely original, but it can run much
existing free UNIX software, resulting in
an entire UNIX-compatible operating
system free from proprietary code

In use by over 12 million users

Fall 2001, Lecture 37

Linux Kernel History

m Version 0.01 (May 1991) — no
networking, ran only on x86 hardware,
limited device-drive support, supported
only the Minix file system

m Version 1.0 (March 1994) — TCP/IP
networking, IPC, enhanced file system,
floppy-disk & CDROM support, paging

m Version 1.2 (March 1995) — some
support for SPARC, Alpha, & MIPS
architectures

m Version 2.0 (June 1996) — multiple
architectures, multiprocessor support

Current (?) version is Version 2.4.3
(March 2001)

Fall 2001, Lecture 37

Linux Distribution

Standard, precompiled sets of packages,
or distributions, include the basic Linux
system, system installation and
management utilities, and ready-to-install
packages of common UNIX tools

The first distributions managed these
packages by simply providing a means of
unpacking all the files into the
appropriate places; modern distributions
include advanced package management

Early distributions included SLS and
Slackware. Red Hat and Debian are
popular distributions from commercial
and noncommercial sources, respectively

The RPM Package file format permits
compatibility among the various Linux
distributions

Fall 2001, Lecture 37

Linux Licensing

m Linux is distributed under GNU General
Public License (GPL)

e Linux is not public domain — public
domain implies that the author(s) have
relinquished copyright over their software

e Linux is not shareware — shareware
implies that the authors are distributing
their software to users as try-and-buy and
expect to be paid

m The GPL allows software to be freely
used and modified by anybody.

e The GPL is written such that the none of
the freely available code can be turned
into commercial (or closed) product,
although a reasonable distribution fee can
be charged

e The GPL stipulates that the source code
must always distributed together with
compiled binaries

Fall 2001, Lecture 37




Linux Kernel Modules

m Kernel code executes in kernel mode
with full access to all the physical
resources of the computer

m Kernel modules are pieces of kernel
code that can be independently
compiled, loaded, and unloaded

¢ A kernel module may typically implement
a device driver, a file system, or a
networking protocol

e Third parties can write and distribute, on
their own terms, device drivers or file
systems that could not be distributed
under the GPL

m Module management allows modules to
be dynamically loaded into memory when
needed

e Regularly queries the kernel, and will
unload modules no longer actively used

Fall 2001, Lecture 37

Linux Process Management

m Two distinct operations (like UNIX):
o fork — creates a new process

e €Xecve — runs a new program

m Under Linux, process properties fall into
three groups:

e Process identity — process ID, process
credentials (user ID & group ID for file
and resource access), personality (!)

e Process environment — command-line
arguments, environment variables

e Process context — state of running
program, including:
m Scheduling context
m Accounting information
m File table & file-system context
m Virtual-memory context

Fall 2001, Lecture 37

Linux Processes and Threads

m Same internal representation for
processes and threads; a thread is
simply a new process that shares the
same address space as its parent.

m Only distinction is when a new thread is
created by the clone system call:

o fork creates a new process with its own
entirely new process context

e clone creates a new process (thread)
with its own identity, but that is allowed to
share the data structures of its parent

m Create new process / thread => create
new identity and scheduling contexts

e Fork (a process) => copy other contexts

e Clone (a thread) => share other contexts

Fall 2001, Lecture 37

Linux Kernel Synchronization

m Kernel-mode execution is requested:

e By a user program who requests an OS
service, either explicitly via a system call,
or implicitly, e.g., a page fault

e By a device driver through a hardware
interrupt, causing a kernel-mode interrupt
handler to be invoked

m The kernel's critical sections are
protected and run without interruption:

o Normal kernel code is nonpreemptible

¢ Interrupts are disabled during a critical
section in the interrupt handler
m To avoid having interrupts disabled for a
long time, interrupt handlers are divided
m Top half is a normal interrupt handler, can
be interrupted by higher-priority processes

m Bottom half is run, with interrupts enabled,
by a miniature scheduler that ensures that
bottom halves never interrupt themselves

Fall 2001, Lecture 37




Linux Process Scheduling

m For time-sharing processes, Linux uses a
prioritized, credit based algorithm

e The process with the greatest number of
credits is selected

e A process loses a credit at every timer
interrupt

e When credits reach 0 the process is
suspended

e Processes gain credits as they age
according to this rule
m The crediting rule
credits = credits/2 + priority
considers process’s history and priority

e This crediting system automatically
prioritizes interactive or 1/0-bound
processes, since CPU-bound processes
exhaust their credits quickly

9 Fall 2001, Lecture 37

Linux Process Scheduling
(cont.)

m For real-time scheduling, Linux
implements FIFO and round-robin; in
both cases, each process has a priority
in addition to its scheduling class.

e The scheduler runs the process with the
highest priority; for equal-priority
processes, it runs the longest-waiting one

e FIFO processes continue to run until they
either exit or block

e A round-robin process will be preempted
after a while and moved to the end of the
scheduling queue, so that round-robing
processes of equal priority automatically
time-share between themselves

10 Fall 2001, Lecture 37

Linux Memory Management

m The page allocator uses a buddy-heap
algorithm to keep track of available
physical pages

e Each allocatable memory region is paired
with an adjacent partner

¢ Whenever two allocated partner regions
are both freed up they are combined to
form a larger region

¢ If a small memory request cannot be
satisfied by allocating an existing small
free region, then a larger free region will
be subdivided into two partners to satisfy
the request

m The VM system maintains the address
space visible to each process: it creates
pages of virtual memory on demand, and
manages the loading of those pages
from disk or their swapping back out to
disk as required

11 Fall 2001, Lecture 37

The Linux Ext2fs File System

m Ext2fs uses a mechanism similar to that
of BSD Fast File System (ffs) for locating
data blocks belonging to a specific file,
differing in their disk allocation policies:

¢ In ffs, the disk is allocated to files in
blocks of 8KB, with blocks being
subdivided into fragments of 1KB to store
small files or partially filled blocks at the
end of a file

o Ext2fs does not use fragments; it
performs its allocations in smaller units.
The default block size on ext2fs is 1KB,
although 2KB and 4KB blocks are also
supported

e Ext2fs uses allocation policies designed
to place logically adjacent blocks of a file
into physically adjacent blocks on disk, so
that it can submit an I/O request for
several disk blocks as a single operation

12 Fall 2001, Lecture 37




