CS 4/53201 Project #2 Operating Systems

Due via email by 11:59pm on Friday 2 November 2001

I ntroduction

In this assignment, you are given aworking thread system, which is part of Nachos; your job is to explore the
use of threads, semaphores, and locks, and to use them to solve a couple of synchronization problems. This project
will comprise 15% of your final course grade.

Reading the Nachos Sour ce Code

Thefirst step in this project isto prepare for the assigned problems by reading some of the Nachos source code.
Most of this code should be familiar to you from Project 1, while only a small amount of codeisnew. Asin
Project 1, | suggest that you read the files in the order described below, and as you do so, read the corresponding
sectionsin ArchnaKalra s“ Salsa— An Operating Systems Tutorial” and Thomas Narten's “ A Road Map Through
Nachos’.

For Project 1, you read through the following code. For this project, you might want to read through it once
again, while thinking primarily about how it handles threads.

» threads/main.cc, threads/threadtest.cc — a simple test of the thread routines.
 threads/system.h, threads/system.cc — Nachos startup/shutdown routines.

* threads/thread.h, threads/thread.cc — thread data structures and thread operations such as thread fork,
thread sleep and thread finish.

* threads/scheduler.h, threads/scheduler.cc — manages the list of threads that are ready to run.

 threads/switch.h, threads/switch.s — assembly language magic for starting up threads and context
switching between them. Don’t worry if you don’t understand these two files — you are not responsible for
understanding them.

 threads/list.h, threads/list.cc — generic list management.
 threads/utility.h, threads/utility.cc — some useful definitions and debugging routines.

After re-familiarizing yourself with the code above, read through the following files to see how Nachos
implements semaphores. Note that the structure for locks and condition variablesisin place, but the code to
implement them ismissing. Y ou might also want to review the material in Lectures 12 and 13 describing how
semaphores and locks are implemented.

» threads/synch.h, threads/synch.cc — synchronization routines. semaphores, locks, and condition
variables.

Finally, read through the following files to see how Nachos puts semaphores to a practical use.

 threads/synchlist.h, threads/synchlist.cc — synchronized access to lists using locks and condition
variables (useful as an example of the use of synchronization primitives).

Tracing Through and Debugging Nachos Sour ce Code

Thefirst step in this project isto read and understand the thread system in Nachos, which implements thread fork,
thread completion, and semaphores for synchronization. To copy the necessary files and compile Nachos, see the
Project 1 instructions on the course home page entitled “How to get an early start.” Run the resulting program
“nachos’ in the thread directory for asimple test of the code. Trace the execution path (asin the Project 1
assigment) for the simple test case provided. Asyou do this project, don't forget about the gdb debugger and the

Nachos DEBUG function (particularly the “t”, “i”, and “m” flags).

Writing Properly Synchronized Code

Part of the goal of this project is to learn how to write code that synchronizes multiple threads, which may be
important in later projects since all threads share a common address space in Nachos. Note that properly
synchronized code should work no matter what order the scheduler chooses to run the threads on the ready list. In

other words, the TA or | should be able to put acall to Thread:: Yield (causing the scheduler to choose another thread
to run) anywhere in your code where interrupts are enabled without changing the correctness of your code.

Identifying Your Changes

So that the TA and | can easily identify which code you have changed or added, surround all changes and additions
in your code by commentsin the following form:

/'l PRQJECT 2 CHANGES START HERE
<your changed code goes here>

/1 PROJECT 2 CHANGES END HERE
Use your own judgment about how much code to surround in a single comment.

The Problems

1. (50 points) In the file threads/threadtest.cc, write a function TestList with the functionality described below.
Modify threads/main.cc so that if Nachos is called with the “—tt” command line option, ThreadTest is called,
while if Nachos is called with the “—tI” command line option, TestList is called.

Y our function TestList should (1) create a queue for storing ASCII characters (use the Nachos List classin
threadg/list.cc) and any necessary semaphores, (2) fork two threads named TweedleDee and TweedleDum to
append characters to the queue, (3) use semaphores to wait for both TweedleDee and TweedleDum to finish, and
(4) print out the contents of the character queue. TweedleDee should append 10 ‘d’sto the end of the queue and
then signal TestList that it is finished, while TweedleDum should append 10 ‘u’'s to the end of the queue and then
signal TestList that it is finished..

After writing this code, in afile called proj2.probl, do the following:
a. Include asamplerun to demonstrate that everything you implemented works.

b. RunNachosusingthe“t”, “i”, and “m” debugging flags, and explain briefly what is happening (don’t include
the program output asit’ll be too long—just explain what’ s happening).

c. If youinsert acal to Thread::Yield inside TweedleDee so that it yields after adding each *d’ to the queue, and
add asimilar call inside TweedleDum, does the output change? If so, show the new output, and explain why
it changes. If not, explain why it doesn’'t change. (Note — if you change the code to add these Yields, leave
the changes commented out when you email the code to the TA..)

d. If you did not complete this problem, clearly describe what you have done, what is not working, and how you
would go about finishing the problem if you had more time.

2. (20 points) Implement locks and condition variables using the Nachos semaphores and other high-level functions.
More specifically, the public interface to locks and condition variables has been provided in threads/synch.h
(read that file, including the comments). What you need to do is to define any necessary private data and
implement the interface in threads/synch.cc.

After writing your code, compare your implementation to the one in ~walker/pub/synch.cc and
~walker/pub/synch.h. Note that this part of the assignment is not for credit, it is just suggested that you
implement locks and condition variables on your own to test your understanding of them, but if you choose not
to, then you can simply copy the working version from ~walker/pub.

After implementing locks, modify your solution to problem 1 above to use locks instead of semaphores to
protect the mutually-exclusive critical sections of code.

After writing this code, in afile called proj2.prob2, do the following:
a. Include a sample run to demonstrate that everything you implemented works.

b. Run Nachosusing the“t”, “i”, and “m" debugging flags, and explain briefly what is happening (don’t include
the program output asit’ll be too long—just explain what’ s happening).

c. If youinsert acal to Thread::Yield inside TweedleDee so that it yields after adding each ‘d’ to the queue, and
add asimilar call inside TweedleDum, does the output change? If so, show the new output, and explain why
it changes. If not, explain why it doesn’t change. (Note — if you change the code to add these Yields, leave
the changes commented out when you email the code to the TA..)

d. If you did not complete this problem, clearly describe what you have done, what is not working, and how you
would go about finishing the problem if you had more time.

3. (30 points) You have been hired by the Kent State Aquarium’s Whale Unit to write a simulation that will help
them study the whale population in the Cuyahoga River. Over the years, the whale population in the Cuyahoga
River has been decreasing, at |east partially because the whales are having synchronization problemsin finding
mates. Thisis complicated by the fact that in order for whales to successfully mate, three whales are needed: one
male, one female, and one more to act as “matchmaker” (literally, to push the other two whales together (the
version of this problem in the list of Nachos sample assignments claims that thisis true)).

In the file threads/threadtest.cc, write a function WhaleMating with the functionality described below.
Modify threads/main.cc so that if Nachos is called with the “—~wm” command line option, WhaleMating is
called.

Y our WhaleMating function should fork one thread to call the function Male, one thread to call the function
Female, and one thread to call the function MatchMaker, repeating this process until it has forked 10 of each.

Y our Male function should wait until thereis afemale and matchmaker available, your Female function should
wait until there is a male and a matchmaker, etc. For simplicity, allow only a single set of whales to mate at
one time; others that are ready must wait until the current set finishes. So that you can see what is occurring,
each function should print out information about which male/female/matchmaker is ready, which is finished, etc.
Also, your code should be properly synchronized, so that inserting random yields should not “break” it.

After writing this code, in afile called proj2.prob3, do the following:
a. Include a sample run to demonstrate that everything you implemented works.

c¢. If you did not complete this problem, clearly describe what you have done, what is not working, and how you
would go about finishing the problem if you had more time.

Whereto Get Help

Help is available from Prof. Walker and from the TA (Mr. Zhen Ye):

* For questions on what the assignment is asking, please contact Prof. Walker.

» For questions on Nachos, please contact either the TA or Prof. Walker.

* For help with your code or debugging, please contact the TA.
Our office hours are on the class web page, and may be extended if necessary as the project deadline approaches; see
the class web page for any announcements of extended office hours.

Also, if there are corrections or amplifications to this project, or if someone asks a question and we feel the
answer may be relevant to other people, that information will be posted on the course home page under the project
assignment. Thus, you might want to check the course home page periodically until the project due date to avoid
getting bogged down in some problem to which a solution has been announced.

Cooperation versus Cheating

See the class syllabus, and contact me if you have any questions. For this project, you are allowed to study the
Nachos source code with your friends, but you are n ot allowed to work with anyone else to actualy solve the
problems, and you are certainly n ot allowed to copy anyone else's solution.

Submitting Your Project

When you finish, submit the files proj2.prob1, proj2.prob2, proj2.prob3, main.cc, threadtest.cc,
synch.cc, synch.h, and any other files that your modified to the TA for grading by typing the following
commands in the threads directory:

shar proj2.probl proj2.prob2 proj2.prob3 min.cc
t hreadtest.cc synch.cc synch.h >shar. out (type al this on one line)

elm -s “Project 2 for Your Name Here” zye@mrcs. kent.edu <shar. out

rm shar. out

The first line puts your files into asingle file called shar.out, and the second line emails that file to the TA
(replace “Y our Name Here” with your own name).

Important warning — once you submit your files, DON'T TOUCH THEM AGAIN — if your email
didn’t reach the TA, or something happens, the TA may need to ask you to resubmit your files. However, before he
lets you do so, he will ask you to log on in her presence, and he will check the modification dates on your filesto

make sure that they haven’t been modified after the due date (if they have been, you will be assessed the appropriate
late penalties).

The project is due at 11:59pm on Friday 2 November 2001. For adiscussion of my late policy, see the course
syllabus.

