CS 4/53201 Homework #1 Operating Systems

Due in class on Friday 13 September 2002

1. (Exercise 1.7 from OSC 6" edition) We have stressed the need for an operating system
to make efficient use of the computing hardware. When is it appropriate for the
operating system to forsake this principle and to “waste’ resources? Why is such a
system not really wasteful?

If certain resources are not needed by other users or processes at a particular time, there may be
no need to conserve those resources. For example, if there is more memory than what is needed
by all currently executing process, it really is not necessary to try to reduce the memory needed
for each process. Also, on single-user systems such as a personal computer, it may be desirable
to give that user fast response time on interactive processes, “wasting” CPU time and possibly
slowing down other tasks.

Other reasonable answers were also accepted.

2. (Exercise 2.2 from OSC 6™ edition) How does the distinction between monitor mode
and user mode function as a rudimentary form of protection (security) system?

This distinction limits the use of more dangerous privileged instructions to monitor mode, and
allows only the OS to use monitor mode. In this way, user programs are prevented from
dangerous and malicious acts such as controlling the memory management, halting the machine,
etc. However, those same programs can make requests to the OS (through system calls), and if
the OS chooses to do so, it can perform those same actions itself on behalf of the user program.

Note that this question asked how the distinction provided protection, not for a definition of the
two modes. Read the question carefully, and then clearly answer the question that was asked!

3. Of the various OS structures described in class and in Chapter 3, which provides the
best separation of OS policies versus OS mechanisms, and why?

The OS policies decide what must be done, whereas the OS mechanisms decide how it is to be
done. The microkernel approach probably fits this model best, possibly with the policy (e.g.,
the CPU scheduler that decides how the length of the CPU time slice and what must be saved
during a context switch) written as a user-mode program, with the low-level implementation
details (i.e., the dispatching mechanism) handled by the microkernel.

You could also make a similar argument for the layered approach, but since that approach is
generally less efficient the microkernel approach would probably be better.

4. (Exercise 4.2 from OSC 6" edition) Describe the difference among short-term,
medium-term, and long-term scheduling.

The short-term scheduler moves processes between ready / waiting lists and the CPU, whereas
the medium-term scheduler moves processes between main memory and disk, and the long-term
scheduler loads programs from disk into memory (in effect, running a program).

The short-term scheduler runs whenever a process reaches the end of its time slice, blocks, or
terminates, whereas the medium-term scheduler runs whenever a process on disk needs to be



brought into memory to execute. The long-term scheduler really isn’t part of most modern
operating systems.

Note that this question asked for the differences between the two, not a definition of each where
*I* was expected to notice the difference between your two definitions. Definitions that are
simply copied from the book are even less acceptable, as you are supposed to answer the
questions in your own words. Read the question carefully, and then clearly answer the
question that was asked!

Compare Remote Procedure Calls to Remote Method Invocation, describing the
similarities and differences of the two techniques.

Similarities: both execute code on a remote machine, packing data into messages and sending
the data to that code, and receiving results from that code.

Differences: RPC passes simple data structures to a remote procedure (procedural
programming), whereas RMI passes objects to a method on a remote object (object-oriented
programming).



