
1 Fall 2002, Lecture 03

Input / Output (I/O)

� CPU and device controllers all use a
common bus for communication

� Software-polling synchronous I/O

● CPU starts an I/O operation, and
continuously polls (checks) that device
until the I/O operation finishes

● Device controller contains registers for
communication with that device
� Input register, output register — for data

� Control register — to tell it what to do

� Status register — to see what it’s done

● Why not connect all I/O devices directly to
CPU? Why not… memory…?

CPU
Disk

Cont ro ller
Pr in t er

Cont roller
Tape Drive
Cont ro ller

Memory
Cont roller

2 Fall 2002, Lecture 03

Input / Output (I/O)
(cont.)

� Terminology

● Synchronous I/O — CPU execution waits
while I/O proceeds

● Asynchronous I/O — I/O proceeds
concurrently with CPU execution

� Interrupt-based asynchronous I/O

● Device controller has its own processor,
and executes asynchronously with CPU
� Device controller puts an interrupt signal

on the bus when it needs CPU’s attention

● When CPU receives an interrupt:
1. It saves the CPU state and invokes the

appropriate interrupt handler using the
interrupt vector (addresses of OS
routines to handle various events)

2. Handler must save and restore software
state (e.g., registers it will modify)

3. CPU restores CPU state

3 Fall 2002, Lecture 03

Input / Output (I/O)
(cont.)

� Memory-mapped I/O

● Uses direct memory access (DMA) — I/O
device can transfer block of data to / from
memory without going through CPU

● OS allocates buffer in memory, tells I/O
device to use that buffer

● I/O device operates asynchronously with
CPU, interrupts CPU when finished

● Used for most high-speed I/O devices
(e.g., disks, communication interfaces)

CPU I/ O device

memory

I/ O commands

dat adat a

4 Fall 2002, Lecture 03

Storage Structures

� At a given level, memory may not be as
big or as fast as you’d like it be

● Tradeoffs between size and speed

� Principle of Locality of Reference leads
to caching

● When info is needed, look on this level

● If it’s not on this level, get it from the next
slower level, and save a copy here in
case it’s needed again sometime soon

Regist ers

Level 1 Cache

Level 2 Cache

Disk (Virt ual Memory)

Disk (File Syst em)

FAST

SLOW

SMALL

LARGEBackup Tape

Main Memory

5 Fall 2002, Lecture 03

Magnetic Disks

� Provide secondary storage for system
(after main memory)

� Technology

● Covered with magnetic material

● Read / write head “floats” just above
surface of disk

● Hierarchically organized as platters,
tracks, sectors (blocks)

� Devices

● Hard (moving-head) disk — one or more
platters, head moves across tracks

● Floppy disk — disk covered with hard
surface, read / write head sits on disk,
slower, smaller, removable, rugged

● CDROM — uses laser, read-only, high-
density
� Optical —read / write

6 Fall 2002, Lecture 03

Protection

� Multiprogramming and timesharing
require that the memory and I/O of the
OS and user processes be protected
against each other

● Note that most PCs do not support this
kind of protection

� Provide protection via two modes of CPU
execution: user mode and kernel mode

● In kernel / privileged / supervisor / monitor
mode, privileged instructions can:
� Access I/O devices, control interrupts
� Manipulate the state of the memory (page

table, TLB, etc.)

� Halt the machine

� Change the mode

● Requires architectural support:
� Mode bit in a protected register

� Privileged instructions, which can only be
executed in kernel mode

7 Fall 2002, Lecture 03

I/O Protection

� To prevent illegal I/O, or simultaneous
I/O requests from multiple processes,
perform all I/O via privileged instructions

● User programs must make a system call
to the OS to perform I/O

� When user process makes a system call:

● A trap (software-generated interrupt)
occurs, which causes:
� The appropriate trap handler to be invoked

using the trap vector

� Kernel mode to be set

● Trap handler:
� Saves state

� Performs requested I/O (if appropriate)
� Restores state, sets user mode, and

returns to calling program

8 Fall 2002, Lecture 03

Memory Protection

� Must protect OS’s memory from user
programs (can’t overwrite, can’t access)

● Must protect memory of one process from
another process

● Must not protect memory of user process
from OS

� Simplest and most common technique:

● Base register —smallest legal address

● Limit register — size of address range

● Base and limit registers are loaded by OS
before running a particular process

● CPU checks each address (instruction &
data) generated in user mode
� Any attempt to access memory outside the

legal range results in a trap to the OS

� Additional hardware support is provided
for virtual memory

9 Fall 2002, Lecture 03

CPU Protection

� Use a timer to prevent CPU from being
hogged by one process (either
maliciously, or due to an infinite loop)

● Set timer to interrupt OS after a specified
period (small fraction of a second)

● When interrupt occurs, control transfers
to OS, which decides which process to
execute for next time interval (maybe the
same process, maybe another one)

� Also use timer to implement time sharing

● At end of each time interval, OS switches
to another process

● Context switch = save state of that
process, update Process Control Block
for each of the two processes, restore
state of next process

10 Fall 2002, Lecture 03

Computer Architecture & OS

� Need for OS services often drives
inclusion of architectural features in CPU:

OS Service Hardware Support

I/O interrupts
memory-mapped I/O
caching

Data access memory hierarchies
file systems

Protection system calls
kernel & user mode
privileged instructions
interrupts & traps
base & limit registers

Scheduling & timers
Error recovery

