
1 Fall 2002, Lecture 14

Using Locks and Condition Variables
(Review)

� Associated with a data structure is both a
lock and a condition variable

● Before the program performs an operation
on the data structure, it acquires the lock

● If it needs to wait until another operation
puts the data structure into an appropriate
state, it uses the condition variable to wait

� Unbounded-buffer producer-consumer:

Lock *lk; int avail = 0;
Condition *c;

/* consumer */
/* producer */ while (1) {
while (1) { lk-> Acquire();

lk->Acquire(); if (avail==0)
produce next item c->Wait(lk);
avail++; consume next item
c->Signal(lk) avail--;
lk->Release(); lk->Release();

} }

2 Fall 2002, Lecture 14

Comparing Semaphores
and Condition Variables

� Semaphores and condition variables are
pretty similar — perhaps we can build
condition variables out of semaphores

� Does this work?

Condition::Wait() { Condition::Signal() {
sema->P(); sema->V();

} }

● No, we’re going to use these condition
operations inside a lock. What happens if
we use semaphores inside a lock?

� How about this?

Condition::Wait() { Condition::Signal() {
lock->Release(); sema->V();
sema->P(); }
lock->Acquire();

}

● How do semaphores and condition
variables differ with respect to keeping
track of history?

3 Fall 2002, Lecture 14

Comparing Semaphores
and Condition Variables (cont.)

Condition::Wait() { Condition::Signal() {
lock->Release(); sema->V();
sema->P(); }
lock->Acquire();

}

� Semaphores have a value, CVs do not!

� On a semaphore signal (a V), the value
of the semaphore is always incremented,
even if no one is waiting

● Later on, if a thread does a semaphore
wait (a P), the value of the semaphore is
decremented and the thread continues

� On a condition variable signal, if no one
is waiting, the signal has no effect

● Later on, if a thread does a condition
variable wait, it waits (it always waits!)

● It doesn’t matter how many signals have
been made beforehand

4 Fall 2002, Lecture 14

Two Kinds of Condition Variables

� Hoare-style (named after C.A.R. Hoare,
used in most textbooks including OSC):

● When a thread performs a Signal(), it
gives up the lock (and the CPU)
� The waiting thread is picked as the next

thread that gets to run

● Previous example uses Hoare-style CVs

� Mesa-style (used in Mesa, Nachos, and
most real operating systems):

● When a thread performs a Signal(), it
keeps the lock (and the CPU)
� The waiting thread gets put on the ready

queue with no special priority
– There is no guarantee that it will be

picked as the next thread that gets to run
– Wore yet, another thread may even run

and acquire the lock before it does!

● When using Mesa-style CVs, always
surround the Wait() with a “while” loop

5 Fall 2002, Lecture 14

Monitors

� A monitor is a programming-language
abstraction that automatically associates
locks and condition variables with data

● A monitor includes private data and a set
of atomic operations (member functions)
� Only one thread can execute (any function

in) monitor code at a time
� Monitor functions access monitor data only

� Monitor data cannot be accessed outside

● A monitor also has a lock, and (optionally)
one or more condition variables
� Compiler automatically inserts an acquire

operation at the beginning of each function,
and a release at the end

� Special languages that supported
monitors were popular with some OS
people in the 1980s, but no longer

● Now, most OSs (OS/2, Windows NT,
Solaris) just provide locks and CVs

6 Fall 2002, Lecture 14

The Dining Philosophers

� 5 philosophers live together, and spend
most of their lives thinking and eating
(primarily spaghetti)

● They all eat together at a large table,
which is set with 5 plates and 5 forks

● To eat, a philosopher goes to his or her
assigned place, and uses the two forks
on either side of the plate to eat spaghetti

● When a philosopher isn’t eating, he or
she is thinking

� Problem: devise a ritual (an algorithm) to
allow the philosophers to eat

● Must satisfy mutual exclusion (i.e., only
one philosopher uses a fork at a time)

● Avoids deadlock (e.g., everyone holding
the left fork, and waiting for the right one)

● Avoids starvation (i.e., everyone
eventually gets a chance to eat)

7 Fall 2002, Lecture 14

The Dining Philosophers
(Using Semaphores)

� First solution — doesn’t work: (why not?)

philosopher-i ()
while (true)

think;
P(fork[i]);
P(fork[i+1 mod 5]);
eat; /* critical section */
V(fork[i]);
V(fork[i+1 mod 5]);

� Second solution — only 4 eat at a time:

philosopher-i ()
while (true)

think;
P(room_at_table);
P(fork[i]);
P(fork[i+1 mod 5]);
eat; /* critical section */
V(fork[i]);
V(fork[i+1 mod 5]);
V(room_at_table);

8 Fall 2002, Lecture 14

The Dining Philosophers
(Using Locks and CVs)

#define N 5
enum philosopher-state (thinking,hungry,eating);
Lock mutex;
Condition self[N];
philosopher-state state[N];

void pickup (int i) { void putdown (int i) {
mutex.Acquire(); mutex.Acquire();
state[i] = hungry; state[i] = thinking;
test(i); test((i+N–1) % N);
if (state[i] != eat) test((i+1) % N);

self[i].Wait(mutex); mutex.Release();
mutex.Release(); }

}

Void test (int k) {
if ((state([k+N–1) % N] != eat) &&

(state[k] == hungry) &&
state[(k+1) % N] != eat)) {

state[k] = eat;
self[k].Signal(mutex);

}
}

