
#### **Networks**

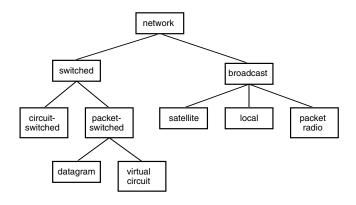
- A *network* is a communication system that provides correct, efficient, and robust data exchange between 2 or more hosts
- Local area network (LAN) —connects nodes in a small geographic area (e.g., single building, single campus)
  - Must be fast with low error rate
  - Media twisted-pair, coaxial cable, fiber optic cable
- Wide area network (WAN) —connects nodes in a wide geographic area (e.g., across the country)
  - May be slower with higher error rate
  - Media leased telephone lines (T1 & T3 service), microwave links, satellite channels

Fall 2002 Lecture 15

### **Network Topologies**



2 Fall 2002, Lecture 15


# **Network Topologies (cont.)**

- Point-to-point links to specific nodes
  - Fully connected each node connects to all other nodes
    - ✓ Each message is fast; it takes only a single "hop" to reach its destination
    - √ Failure of any one node does not affect communication except to it
    - X Expensive!
  - Partially connected each node connects to some, but not all, nodes
    - ✓ Less expensive
    - A message may have to go though several other nodes
    - X Less tolerant to failure
  - Tree network hierarchy
    - ✓ Messages between direct descendants are fast
    - Messages between "cousins" must go up to a common ancestor and back down
    - X Not tolerant of failures

# **Network Topologies (cont.)**

- Star— all nodes connect to a single centralized node
  - √ Inexpensive
  - ✓ Each message takes only two hops
  - ✗ Failure of central node disconnects entire network
- Ring all nodes connect in a circle
  - One directional ring each node can send in only one direction
    - √ Inexpensive
    - **X** Message may need to take *n* hops
    - X Not tolerant of failures
  - Bi-directional ring send either way
- Bus all nodes connect to common network
  - ✓ Inexpensive, linear in number of nodes
  - √ Tolerant of node failures
  - X Only one node can send data at a time

#### **Network Communication**



- Connection-oriented communication
  - Information delivered as a stream of bytes, in correct order
  - Connect, exchange data, release
- Connectionless communication
  - Information delivered as a set of packets
  - Packets may be delivered out of sequence, must be reassembled

Fall 2002, Lecture 15

# **Switching Technologies**

- In a broadcast (or multiaccess) network, all hosts directly connect to a single shared communication medium
  - Each host check the destination address on every message to decide whether or not to read that message
- In a switched network, there is a partially-connected topology, and there may be multiple paths between two hosts
  - Messages may have to pass through intermediate nodes to reach destination
- Circuit switching a <u>dedicated</u> communication path is reserved, and then used to send the entire message
  - Connection occupies a fixed capacity (not necessarily entire capacity) of each link for the entire lifetime of the connection
    - Connection-oriented communication

Fall 2002, Lecture 15

# Switching Technologies(cont.)

- Packet switching data is broken up into a sequence of fixed-size packets
  - Each packet is passed through the network from source to destination along some (possibly different) route (path)
  - At each node, the entire packet is received, stored briefly, and then forwarded to the next node
  - Datagram package switching
    - Packets are called *datagrams*
    - Each packet is routed independently
      - A sequence of packets can be received out of order
    - Connectionless communication
  - Virtual circuit package (message) switching
    - All packets from one packet stream are sent along the same path (= virtual circuit)
      - Guarantees packets are received in sequence
    - Connection-oriented communication

### Routing

- Routing software decides which path to use to move a message from the destination to source
- Routing is usually *hop-by-hop*, meaning each host chooses the next host to send the message to
- Static (fixed) routing routing tables are stored, and change very infrequently (e.g., after major the network changes)
  - ✓ Low setup cost, packets arrive in order
  - X Can't react to changes in network load
- *Dynamic* routing routing tables are updated frequently
  - ✓ Can react to changes in network load
  - X Higher setup cost for each packet
  - X Packets can arrive out of order

7

Fall 2002, Lecture 15

Fall 2002, Lecture 15